Thanks to the development of fiber optic technologies for the Internet, large cities and metropolitan networks are now well connected through the fiber optic technology. Since the mid-nineties of the last century a rapid research in the transmission of stable frequencies via optical fibers has been introduced. It is necessary for mutual remote comparison of optical frequency standards via optical fibers. But in order to transmitting optical frequencies through photonic data networks, the key task is to compensate the Doppler shift that is induced in the fibers by external influences, such as particularly changes in the temperature or acoustic noise and mechanical vibration environment in which the fibers are installed. In this work we present some techniques to compensate these unwanted effects. Furthermore, we present the realization of an optical system and measurement parameters achieved by the phase-coherent optical transmission of the optical frequency standard working at a wavelength of 1540.5 nm. The optical frequency dissemination with the stable transport delay has been established on the fiber optic link leading from the Institute of Scientific Instruments ASCR Brno to headquarters of national provider CESNET in Prague over the optical fiber with the length of 306 km. The work includes the verification and measurement of changes of the transport delays using simultaneous bidirectional transmission of 1PPS signals from the instrument based atomic clocks placed in both ends of the same optical fiber. and Díky rozvoji komunikačních technologií pro internet jsou nyní dobře propojena velká města i metropolitní sítě optickými vlákny, čímž lze zajistit čistě fotonický přenos signálů na vzdálenosti až stovek kilometrů. Od poloviny devadesátých let minulého století probíhá intenzivní výzkum v oblasti přenosu stabilních frekvencí pomocí optických vláken, který je nezbytný pro vzájemná dálková porovnávání normálů optické frekvence. Aby však bylo možné přenášet optické frekvence přes běžné fotonické datové sítě, je nezbytné kompenzovat dopplerovský posuv, který je ve vláknech indukován působením vnějších vlivů, jako jsou zejména změny teploty či akustické a mechanické vibrace prostředí, ve kterém jsou vlákna uložena. V práci představujeme vybrané techniky kompenzace těchto nežádoucích efektů. Dále prezentujeme vlastní realizaci optické soustavy a měření dosažených parametrů fázově koherentního přenosu optické frekvence normálového laseru pracujícího na vlnové délce 1540,5 nm z pracoviště Ústavu přístrojové techniky AV ČR v Brně do ústředí poskytovatele fotonických služeb CESNET v Praze po optickém vlákně délky 306 km. Součástí výsledků je i verifikace měření změn dopravního zpoždění pomocí obousměrného simultánního přenosu signálů 1PPS z přístrojových atomových hodin umístěných v obou lokalitách po stejném optickém vlákně.
Measuring length changes of optical resonators usually requires using lasers with a narrow spectral linewidth. For tracking the whole interval of possible lengths a laser with a wide tunability is needed. Laser sources based on DFB laser diodes have required tunability range however their spectral linewidth is in the MHz order. An usual way of reducing the noise and hence the linewidth of a tunable laser is locking its optical frequency to an etalon cavity using f.e. a P-D-H setup. In this case, the tunability is reduced to a discrete set of frequency values corresponding to the modes of the etalon resonator. The method presented in this article uses the Michelson interferometer with heterodyne detection as an optical frequency discriminator. Using a fast servo loop controlling the optical frequency of a diode laser we are able to reduce the sideband noise of the laser by up to 60 dB and reduce its spectral linewidth. and Měření délkových změn optických rezonátorů zpravidla vyžaduje použití laserů s úzkou spektrální šířkou čáry. Pro sledování celého rozsahu délkových změn je zapotřebí laser s velkou přeladitelností. Zdroje laserového záření založené na DFB laserových diodách disponují velkým rozsahem přeladění, jejich nevýhodou je však šířka čáry v řádu až jednotek MHz. Obvyklý způsob redukce šumu, a tím i zužování šířky spektrální čáry laserové diody, spočívá v rychlé elektronické stabilizaci její vlnové délky na etalonovou rezonátorovou kavitu, např. P-D-H metodou. Tím však ztrácíme přeladitelnost, neboť v takovém případě můžeme optickou frekvenci laseru fixovat pouze na množinu diskrétních hodnot odpovídajících jednotlivým módům použitého rezonátoru. Námi prezentovaná metoda využívá v roli optického kmitočtového diskriminátoru nevyvážený Michelsonův interferometr s heterodynní detekcí. S využitím rychlé zpětnovazební regulační smyčky řídící optickou frekvenci laseru jsme při zachování plné přeladitelnosti v celém pracovním rozsahu vlnových délek laseru schopni potlačit jeho frekvenční šum až o 60 dB, a tím i zúžit jeho spektrální čáru.