The chlorophyll fluorescence (F) temperature curves in a linear time-temperature heating/cooling regime were used to study heat-induced irreversible F changes in primary green leaves of spring barley (Hordeum vulgare L. cv. Akcent). The leaf segments were heated in a stirred water bath at heating rates of 0.0083, 0.0166, 0.0333, and 0.0500 °C s-1 from room temperature up to maximal temperature Tm and then linearly cooled to 35 °C at the same rate. The F intensity was measured by a pulse-modulated technique. The results support the existence of the two critical temperatures of irreversible F changes postulated earlier, at 45-48 and 53-55 °C. The critical temperatures are slightly dependent on the heating rate. Two types of parameters were used to characterize the irreversibility of the F changes: the coefficient of irreversibility μ defined as the ratio of F intensity at 35 °C at the starting/ending parts of the cycle and the slopes of tangents of linear parts of the F temperature curve. The dependence of μ on T m revealed a maximum, which moved from 54 to 61 °C with the increasing heating/cooling rate v from 0.0083 to 0.0500 °C s-1, showing two basic phases of the irreversible changes. The Arrhenius and Eyring approaches were applied to calculate the activation energies of the initial increase in μ. The values varied between 30 and 50 kJ mol-1 and decreased slightly with the increasing heating rate. and J. Frolec ... [et al.].
Measurement of the chlorophyll (Chl) a fluorescence rise (FR) under higher exciting irradiance (EI), the O-J-I-P transient, or under lower irradiance, the O-I-P transient, is a routinely used method to access photosystem 2 function in thylakoid membranes of chloroplasts. Our measurements with a suspension of pea thylakoid membranes showed that the relative heights of the J and I steps in the FR depended not only on EI but also on the concentration and thickness of the sample. We explain this effect as a consequence of the gradient of EI within the sample. We tested this suggestion by theoretical simulations of the FR based on the model that was previously used for simulation of the FR considering in addition the gradient of EI within the sample. Our theoretical results correspond well with the experiments. The irradiance gradient effect may influence measured FR significantly and this fact should be taken into consideration in the interpretation of measured FRs. and P. Sušila ... [et al.].