The major light-harvesting chlorophyll (Chl) a/b complexes of photosystem II (LHCIIb) play important roles in energy balance of thylakoid membrane. They harvest solar energy, transfer the energy to the reaction center under normal light condition and dissipate excess excitation energy under strong light condition. Many bamboo species could grow very fast even under extremely changing light conditions. In order to explain whether LHCIIb in bamboo contributes to this specific characteristic, the spectroscopic features, the capacity of forming homotrimers and structural stabilities of different isoforms (Lhcb1-3) were investigated. The apoproteins of the three isoforms of LHCIIb in bamboo are overexpressed in vitro and successfully refolded with thylakoid pigments. The sequences of Lhcb1 and Lhcb2 are similar and they are capable of forming homotrimer, while Lhcb3 lacks 10 residues in the N terminus and can not form the homotrimeric structure. The pigment stoichiometries, spectroscopic characteristics, thermo- and photostabilities of different reconstituted Lhcbs reveal that Lhcb3 differs strongly from Lhcb1 and Lhcb2. Lhcb3 possesses the lowest Qy transition energy and the highest thermostability. Lhcb2 is the most stable monomer under strong illumination among all the isoforms. These results suggest that in spite of small differences, different Lhcb isoforms in bamboo possess similar characteristics as those in other higher plants., Z. H. Jiang ... [et al.]., and Obsahuje bibliografii