Distribution of NADPH-protochlorophyllide oxidoreductase (POR) in etioplast of etiolated barley leaf was studied by using Western blot analyses of etioplast fractions isolated on a sucrose gradient. When the leaf was exposed to light, POR content decreased in the etioplast inner membrane and prolamellar body sub-membrane fraction while it was simultaneously increased in the stroma. By using 77 K fluorescence spectroscopy analyzes, we found for irradiated etiolated leaf that the POR protein in the stroma was co-localized with chlorophyllide (Chlide) emitting at 678 nm. Relocalization of the POR-Chlide complex induced by irradiation suggests that POR participates in the pigment transport processes during early stages of the thylakoid membrane development. and D. Kovacevic, D. Dewez, R. Popovic.
Localization of protochlorophyll(ide) (Pchlide) forms and chlorophyllide (Chlide) transformation process were studied by using comparative analyses of de-convoluted 77 K fluorescence spectra of barley etioplast stroma and different membrane fractions obtained by sucrose gradient centrifugation. Non-photoactive 633 nm Pchlide form was mainly located in the envelope-prothylakoid membrane mixture while the photoactive 657 nm Pchlide was dominant pigment in the prolamellar body membrane and in the soluble etioplast fraction (stroma). When these fractions were exposed to a saturating flash, conversion of photoactive Pchlide into 697 nm Chlide was preferential in the prolamellar body and in the stroma, while the 676 nm Chlide was dominant pigment form in the envelope-prothylakoid fraction. These spectral characteristics are considered to reflect molecular composition and organization of the pigment-protein complexes specific for each etioplast compartment. and D. Kovacevic, D. Dewez, R. Popovic.