The occurrence of shade and drought stress either individually or simultaneously causes altered morphophysiological and molecular responses in crops. Nevertheless, responses of crop plants to combined shade and drought stress are unique as compared to those of individually occurring stress which urges need to study and identify distinctions, commonalities, and the interaction between responses of plants to these concurrent stress factors. In the present review, we outlined currently available knowledge on responses of plants to shade and drought stress on a shared as well as the unique basis and tried to find a common thread potentially underlying these responses. Then, we briefly described some plausible mitigation strategies to cope with these stresses along with future perspectives. A deeper insight into plant responses to co-occurring shade and drought stress will help us to generate crops with broad-spectrum stress tolerance and increased resilience to such stresses in high planting densities or intercropping systems, thus, ensuring food security.
In order to use rationally switchgrass (Panicum virgatum L.) introduced in a large scale in semiarid regions on the Loess Plateau of China, we investigated and compared soil water storage dynamics, diurnal and seasonal changes in leaf photosynthetic characteristics, and biomass production of switchgrass grown under three different row spacing (20, 40, and 60 cm). Results indicated that photosynthetic parameters showed a pronounced seasonality. Diurnal course of net photosynthetic rate (P N) was bimodal, showing obvious midday depression, which was mainly due to stomatal limitation in May and June, by nonstomatal limitation in August, and both stomatal and nonstomatal factors in September. Generally, P N, stomatal conductance, instantaneous water-use efficiency, light-saturated net photosynthetic rate, saturation irradiance, and compensation irradiance increased with increasing row spacing. Plant height, leaf width, and a relative growth rate of biomass accumulation were significantly higher at the row spacing of 60 cm, while 20 cm spacing showed significantly higher aboveground biomass production and the biomass water-use efficiency. All these confirmed that soil water is the key limiting factor influencing switchgrass photosynthesis, and suggested that the wide row plantation (i.e., 60 cm) was more beneficial to switchgrass growth, while narrow spacing was in favor of improving switchgrass productivity and water-use efficiency., Z. J. Gao, B. C. Xu, J. Wang, L. J. Huo, S. Li., and Obsahuje seznam literatury
We quantified the physiological responses of black willow to four soil moisture regimes: no flooding (control, C), continuous flooding (CF), periodic flooding (PF), and periodic drought (PD). Stomatal limitation was one of the factors that led to the reduced photosynthetic capacity in CF cuttings. Under PD, stomatal closure, decreased leaf chlorophyll content, and increased dark fluorescence yield contributed to photosynthetic decline. CF cuttings accumulated the lowest shoot biomass while the final height and root growth were most adversely affected by PD. PF cuttings tended to allocate more photoassimilates to root growth than to shoots. and S. Li ... [et al.].