Drought stress has multiple effects on the photosynthetic apparatus. Herein, we aimed to study the effect of drought stress on fluorescence characteristics of PSII in leaves of Plectranthus scutellarioides and explore potentially underlying mechanisms. Plants of P. scutellarioides were grown in a greenhouse and subjected to drought (DS, drought-stressed) or daily irrigation (control group). Leaf chlorophyll (Chl) index and induction kinetics curves of Chl a fluorescence and the JIP-test were used to evaluate effects of drought lasting for 20 d. Our results showed that both the leaf and soil relative water content decreased with increasing treatment duration. The leaf Chl index was reduced to half in the DS plants compared with the control group after 20 d. The minimal fluorescence in the DS plants was higher than that in the control plants after 10 d of the treatment. Maximum photochemical efficiency and lateral reactivity decreased with increasing treatment duration in the DS plants. With the continuing treatment, values of absorption flux per reaction center (RC), trapped energy flux per RC, dissipated energy flux per RC, and electron transport flux per RC increased in the earlier stage in the DS plants, while obviously decreased at the later stage of the treatment. In conclusion, drought stress inhibited the electron transport and reduced PSII photochemical activity in leaves of P. scutellarioides., L.-L. Meng, J.-F. Song, J. Wen, J. Zhang, J.-H. Wei., and Seznam literatury