The effectiveness of eight spectral reflectance indices for estimating chlorophyll (Chl) content in leaves of Eugenia uniflora L., a tropical tree species widely distributed throughout the world and a key species for ecosystem restoration projects, was evaluated. Spectral reflectance indices were tested using sun and shade leaves with a broad variation in leaf mass per area (LMA). Shortly after plants were exposed to chilling temperatures, there was a dramatic visible change in some sun leaves from green to red. Prior to testing Chl-related reflectance indices, the green and red leaves were separated according to the anthocyanin reflectance index (ARI). Slightly green to dark green leaves corresponded to an ARI value less than 0.11 (n = 107), whereas slightly red to red leaves corresponded to an ARI value greater than 0.11 (n = 35). To estimate leaf Chl, two simple reflectance indices (SR680 and SR705), two normalized difference indices (ND680 and ND705), two modified reflectance indices (mSR705 and mND705), a modified Chl absorption ratio index (mCARI705) and an index insensitive to the presence of anthocyanins (CIre) were evaluated. Good estimates of leaf Chl content were obtained using the reflectance indices tested regardless of the presence of anthocyanins and changes in LMA. Based on the coefficients of determination (r2) and the root mean square errors (RMSɛc) the best results were obtained with reflectance indices measured at wavelengths of 750 and 705 nm. Considering the performance of the models the best reflectance indices to estimate Chl contents in E. uniflora leaves with a broad variation in LMA and anthocyanin contents was SR705 and mCARI705., M. S. Mielke, B. Schaffer, A. C. Schilling., and Obsahuje bibliografii
To analyze acclimation of Euterpe edulis seedlings to changes in light availability, we transferred three-year-old seedlings cultivated for six months under natural shade understory [= 1.3 mol(photon) m-2 d-1] to a forest gap [= 25.0 mol(photon) m-2 d-1]. After the transfer, changes in chlorophyll fluorescence and leaf gas-exchange parameters, as well as in the light-response curves of photosynthesis and photosynthetic induction parameters, were analyzed during the following 110 days. Simultaneously measured photosynthetic characteristics in the shaded seedlings grown in understory served as the control. Despite the fact that the understory seedlings were under suboptimal conditions to achieve their light-saturated net photosynthetic rate (PNmax), light-response curves and photosynthetic induction parameters indicated that the species had the low respiration rate and a fast opening of stomata in response to the intermittent occurrence of sunflecks, which exerted a feed-forward stimulation on PNmax. Sudden exposure to high light induced photoinhibition during the first week after the transfer of seedlings to gap, as it was shown by the abrupt decline of the maximal quantum yield of PSII photochemistry (Fv/Fm). The photoinhibition showed the time-dependent dynamics, as the Fv/Fm of the seedlings transferred to the forest gap recovered completely after 110 days. Furthermore, the net photosynthetic rate increased 3.5-fold in relation to priorexposure values. In summary, these data indicated that more than 21 days was required for the shade-acclimated seedlings to recover from photoinhibition and to relax induction photosynthetic limitations following the sudden exposure to high light. Moreover, the species responded very quickly to light availability; it highlights the importance of sunflecks to understory seedlings., A. O. Lavinsky, F. P. Gomes, M. S. Mielke, S. França., and Obsahuje bibliografii
In three separate experiments, the effectiveness of a SPAD-502 portable chlorophyll (Chl) meter was evaluated for estimating Chl content in leaves of Eugenia uniflora seedlings in different light environments and subjected to soil flooding. In the first experiment, plants were grown in partial or full sunlight. In the second experiment plants were grown in full sunlight for six months and then transferred to partial sunlight or kept in full sunlight. In the third experiment plants were grown in a shade house (40% of full sunlight) for six months and then transferred to partial shade (25-30% of full sunlight) or full sunlight. In each experiment, plants in each light environment were either flooded or not flooded. Non-linear regression models were used to relate SPAD values to leaf Chl content using a combination of the data obtained from all three experiments. There were no significant effects of flooding treatments or interactions between light and flooding treatments on any variable analyzed. Light environment significantly affected SPAD values, chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll [Chl (a+b)] contents in Experiment I (p≤0.01) and Experiment III (p≤0.05). The relationships between SPAD values and Chl contents were very similar among the three experiments and did not appear to be influenced by light or flooding treatments. There were high positive exponential relationships between SPAD values and Chl (a+b), Chl a, and Chl b contents. and M. S. Mielke, B. Schaffer, C. Li.