The effects of NaCl treatment on the photosynthetic machinery in wheat (Triticum aestivum L.) cultivars differing in salt tolerance were investigated by comparison with iso-osmotic PEG treatment. Both cultivars similarly reduced the photosystem 2 (PS2) energy conversion efficiency (ΦPS2) rapidly when plants were exposed to a 100 mM NaCl solution, though no decline was detected under the iso-osmotic PEG treatment. There was no correlation between the reduction of the leaf relative water content (RWC) and the ΦPS2 in the two iso-osmotic stress treatments. In contrast, a decline of ΦPS2 along with the increase of the leaf sodium content above 4 % dry matter was detected under the NaCl treatment, while no such correlation was detected with other cations. The recovery of ΦPS2 after photoinhibitory irradiation was repressed by the NaCl treatment as the increase of the duration of the treatment. Norin 61 subjected to the 100 mM NaCl treatment for 10 d showed a decline of the ΦPS2 after 1 h moderate irradiation of 400 μmol m-2 s-1 PPFD. Thus the concentrated Na+ within a leaf under salinity treatments may decrease the stability of PS2 functions and lead to photochemical inactivation. and S. Muranaka, K. Shimizu, M. Kato.
The effects of iso-osmotic salinity and drought stresses on leaf net photosynthetic rate (PN) in two wheat (Triticum aestivum L.) cultivars BR 8 and Norin 61, differing in drought tolerance, were compared. In drought-sensitive Norin 61, the decline of PN was larger than that in drought-tolerant BR 8. Under NaCl treatment, PN decreased in two phases similarly in both cultivars. In the first phase, photosynthetic depression was gradual without any photochemical changes. In the second phase, photosynthetic depression was rapid and accompanied with a decline of the energy conversion efficiency in photosystem 2 (ΦPS2). Our observations suggest that the osmotic factor may induce a gradual depression of photosynthesis due to stomatal closure under both stress treatments. However, under NaCl treatment, a ionic factor (uptake and accumulation of excess Na+) may have direct effects on electron transport and cause more severe photosynthetic depression. The drought tolerance mechanism of BR 8 was insufficient to maintain single-leaf photosynthesis under salinity. and S. Muranaka, K. Shimizu, M. Kato.