The objective of the present investigation was to examine the extent of variations in single leaf net photosynthetic rate (PN) and its relative dependence on stomatal conductance (gs) and the mesophyll capacity to fix carbon in 12 clones of the natural rubber plant. There were significant variations in PN measured at low and saturating photon flux density (PFD); the extent of variation was larger at low than at saturating PFD. The compensation irradiance (CI) and apparent quantum yield of CO2 assimilation (φc) calculated from the PN/PFD response curves showed significant variations among the clones. PN at low irradiance was positively correlated with φc. Thus a clone with large PN at low irradiance, high φc, and low CI may tolerate shade better and thus produce a high tree stand per hectare. A strong positive correlation existed between PN saturated with radiant energy (Psat) and carboxylation efficiency (CE) estimated from the response curves of PN on intercellular CO2 concentration (Ci), but gs showed a poor correlation with Psat High CO2 compensation concentration (Γ) led to low CE in Hevea clones. A clone with large Psat, high CE, low gs, and low Γ is the one in which photosynthesis is more dependent on the mesophyll factors than stomata. Such a clone may produce relatively high biomass and maintain high water use efficiency. and K. N. Nataraja, J. Jacob.