The effects of NaCl treatment were analysed in two species of considerably different resistance. In glycophyte, the content of ascorbate decreased but lipophilic antioxidants (α-tocopherol, plastochromanol, and hydroxy-plastochromanol) increased due to 150 mM NaCl. In halophyte, 300 mM NaCl caused a significant increase in hydrophilic antioxidants (ascorbate, total glutathione) but not in the lipophilic antioxidants. The redox states of plastoquinone (PQ) and P700 were also differently modulated by salinity in both species, as illustrated by an increased oxidation of these components in glycophyte. The presented data suggest that E. salsugineum was able to avoid a harmful singlet oxygen production at PSII, which might be, at least in part, attributed to the induction of the ascorbate-glutathione cycle. Another important cue of a high salinity resistance of this species might be the ability to sustain a highly reduced states of PQ pool and P700 under stress, which however, drastically affect the NADPH yield., M. Wiciarz, E. Niewiadomska, J. Kruk., and Obsahuje bibliografii
Superoxide dismutase (SOD) activity and parameters of chlorophyll fluorescence, the ratio of maximal to variable fluorescence (Fv/Fm), maximal fluorescence (Fm), and minimal fluorescence (F0) were determined on Picea abies growing at different altitudes. The decreases of Fv/Fm and Fm, in comparison to samples from the lower stands (control), were found on trees from the highest stands. The decrease of fluorescence parameters was reversible, at least partly, after keeping branches for some days in the laboratory. Fv/Fm measured in spring when trees were partially covered with snow revealed greater degree of photoinactivation in branches collected from above the snow in comparison to those from below the snow. In samples collected from above snow also slower recovery from stress was observed. Two main SOD isoforms were determined in needles of P. abies, and classified as CuZnSODs. The activity of both SOD isoforms was increasing with the altitude, thus indicating the highest level of oxidative stress at the timberline zone. and Z. Miszalski ... [et al.].
The 02 ’ production in isolated plastids and their ability to detoxify SO2 increased duiing greening of oat plants and was much stronger in those with working photosynthetic apparatus than in etiolated ones. The sulphite oxidation level was stimulated using superoxide dismutase inhibitors.