We studied the responses of leaf gas exchange and growth to an increase in atmospheric CO2 concentration in four tropical deciduous species differing in carbon fixation metabolism: Alternanthera crucis, C3-C4; Ipomoea carnea, C3; Jatropha gossypifolia, C3; and Talinum triangulare, inducible-CAM. In the first stage, plants were grown in one open-top chamber at a CO2 concentration of 560±40 μmol mol-1 (EC), one ambient CO2 concentration chamber (AC), and one unenclosed plot (U). In the second stage, plants were grown in five EC chambers (CO2 concentration = 680±30 μmol mol-1), five AC chambers, and five unenclosed plots. During the first weeks under EC in the first stage, plants of all the species had a very marked increase in their maximal net photosynthetic rates (Pmax) of 3.5 times on average; this stimulatory effect was maintained for 11-15 weeks, rates dampening afterward to values still higher than controls for 37 weeks. After a suspension of CO2 enrichment for 6 weeks, an increase in Pmax of EC plants over the controls was found in plants of all the species until week 82 of the experiment. Stomatal conductance (g) showed no response to EC. Carboxylation efficiency decreased in all the species under EC and this was correlated with a decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) content in all the species except for T. triangulare. During drought Pmax was higher in all species except for 7 triangulare, grown under EC relative to controls.
Ecosystem photosynthetic rates at EC were higher than in the controls during the second stage under irrigation as well as after 30 d of drought. and M. D. Fernández ... [et al.].