The activity of enzymes characteristic for C4-type photosynthesis was determined in different organs of two herbaceous plants: Reynoutria japonica Houtt. and Helianthus tuberosus L. The activity of phosphoenolpyruvate carboxylase (PEPC) was usually higher in the roots, some of the stem tissues and petioles in comparison to the leaf blades. The highest activity of malic enzymes (NAD-ME, NADP-ME) and phosphoenolpyruvate carboxykinase (PEPCK) was in the petioles and stem tissues of both plants and the lowest in the leaf blades and the pith of Helianthus tuberosus L. and M. Kocurek, J. Pilarski.
The effect of a short (7 d), prolonged (14 d) soil drought (D) and (7 d) recovery (DR) on the leaf optical properties - reflectance (R), transmittance (T) and absorptance (A) in photosynthetically active radiation (PAR) and near infrared radiation (NIR) range of irradiation (750-1100 nm) was studied for maize and triticale genotypes differing in drought tolerance. The drought stress caused the changes in leaf optical properties parameters in comparison with non-drought plants. The observed harmful influence of drought was more visible for maize than triticale. and M. T. Grzesiak ... [et al].
Photosynthetic assimilatíon of CO2 in a four-year-old plant of lilac, measured in April and in July, was compared. The results were calculated with regard to the surface area of the particular year groups of the stems and to the total surface area of the stems as well as to the globál surface area of the leaves of the plant. In April the stems were the only site of photosynthesis. In July the main organs of CO2 assimilatíon were the leaves, while the participation of the shoots in that period amounted to 2 %. In the process of photosynthesis in the stems mainly the endogenous CO2 was utilized, while the share of exogenous CO2 was 0.02 %. The potential photosynthesis was determined also on the basis of measurements of oxygen release by chloroplasts isolated from the bark and leaves. In July the production of oxygen by chloroplasts ffom the bark of all stems was 5 % of the amount of oxygen released by the chloroplasts isolated from the leaves. In April the production of oxygen by chloroplasts isolated from the bark of the particular year groups of the stems was higher than in July. In the process of CO2 assimilatíon by the bark and leaves the potential Chemical activity of chloroplasts was not fully utilized. The potential CO2 assimilatíon by chloroplasts isolated from the bark was 8.5 times greater than the measured results of CO2 exchange in July and 35.8 times greater in April.