In aqueous solutions of chlorophyll (Chl) a with synthesized polypeptides, at high ratios of Chl to polypeptides (about 75-150 µM to 500 µM) clusters of polypeptides and pigment molecules were formed. The main absorption maxima of more than one formed cluster were located at about 500 nm (Soret band) and in the region of 720-806 nm (red band). The formation of these clusters was fairly slow (some hours) at room temperature and even slower at 4 °C. The rate of cluster formation increased with the increase in Chl concentration. The addition of the even low amount of reaction centres (RCs), separated from the purple bacteria Rhodobacter sphaeroides, to the sample of Chl with polypeptides caused a very strong decrease in the efficiency of cluster formation, and a change in concentration ratios of various pigment-polypeptide aggregates. It was probably a competition between the interaction of Chl with polypeptides and with the RCs. The yield of thermal deactivation of the clusters was high, much higher than that for the RCs alone and it was different for various types of cluster. The clusters absorbing at 725-750 nm were fluorescent with maximum of emission at about 770 nm, whereas clusters absorbing at about 800 nm were nonfluorescent. and H. Enomoto ... [et al.].
Absorption , fluorescence, delayed emission and photoacoustic spectra were obtained for the green photosynthetic bacterium. Whole cells incorporated in fluid (culture medium, viscous solution of polyvinyl alcohol, glycol) and rigid (isotropic and stretched polyvinyl alcohol film) media were investigated. The polarized absorption spectra of the stretched polyvinyl alcohol sample showed that the Qy transition moments of chlorosomal bacteriochlorophyll с was almost parallel to the film axis. Bacteriochlorophyll (BChl) с degradation occurred in some of the samples during prolonged storage and as a result a pigment absorbing at 670 nm, which was disaggregated BChl с or/and bacteriopheophytin c, was formed. This pigment was unoriented in stretched polyvinyl alcohol. The fluorescence spectrum of native cells can be analyzed using three Gaussian components at 754, 781 and 813 pm. The first component seems to be related to BChl с aggregates and the others to BChl a complexes. The time-resolved delayed luminescence spectra showed that practically all the complexes of green bacteria exhibited delayed emission but the decay times and intensities were different for the different complexes. In the photoacoustic spectra two maxima of the chlorosomal BChl с forms were well resolved and located at 748 and 765 nm. The photoacoustic maximum at 830 nm was probably related to the reaction centre (RC). In the Soret band the largest peak of the photoacoustic spectra was observed at 473 nm which showed that carotenoids absorbing in this range were losing more excitation by heat. The BChl с aggregates attached to chlorosome rods exhibited a peak at 446 nm. The efficient thermal deactivation also showed a BChl a located in RC (peak at 846 nm) and long-wavelength BChl a antenna complexes with a deactivation peak at 884 nm.
Investigations conceming the deactivation of radiant energy absorbed by the pigments of photosynthetic organisms, either through emitting the fluorescence and delayed luminescence or converting into heat in slow or fast processes, are described. These paths of deactivation can be established by measurements of the absorption, fluorescence excitation, delayed emission and photoacoustic spectra in the same sample. The slow paths of radiative and non-radiative deactivation are of a speciál interest. Even with complex photosynthetic samples it is possible to evaluate slow and fast components of the thermal deactivation from photoacoustic spectra taken at various frequencies of the radiation modulation. In all samples containing reaction centres, anteima complexes or their models, at least a part of delayed deexcitation is due to ionization and delayed recombination of pigments. This is confirmed by photopotential generation for the same samples located in a photoelectrochemical cell. The methods of investigating slow processes of radiative and radiationless deexcitation of the photosynthetic pigments in organisms, their fragments and model Systems are described. Also the results of spectral measurements from some experiments are shown as examples of the described proceduře. These measurements were carried out predominantly as an attempt at explaining the interactions between chlorophylls and carotenoids.