Seedling performance may determine plant distribution, especially in water-limited environments. Plants of Caragana korshinskii commonly grow in arid and semiarid areas in northwestern China, and endure water shortage in various ways, but little is known about their performance when water shortage occurs at early growth stages. The water relations, photosynthetic activity, chlorophyll (Chl) content and proline accumulation were determined in 1-year-old seedlings growing in a 1:1 mixture of Loess soil and Perlite and subjected to (1) a water deficit for 20 days and (2) kept adequately watered throughout. The water deficit induced low (-6.1 MPa) predawn leaf water potentials (LWP), but did not induce any leaf abscission. Stomatal conductance (gs), leaf transpiration rate (E), and net photosynthetic rate (PN) decreased immediately following the imposition of the water deficit, while the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) and the effective quantum yield of PSII (ΦPSII) decreased 15 days later. An early and rapid decrease in gs, reduced E, increased Chl (a+b) loss, increased the apparent rate of photochemical transport of electrons through PSII (ETR)/PN, as well as a gradual increase in non-photochemical quenching of fluorescence (NPQ) and proline may have contributed to preventing ΦPSII from photodamage. C. korshinskii seedlings used a stress-tolerance strategy, with leaf maintenance providing a clear selective advantage, considering the occasional rainfall events during the growing season. and X. W. Fang ... [et al.].
The rate of photosynthesis (PN) in leaves and pods as well as carbon isotope content in leaves, pod walls, and seeds was measured in well-watered (WW) and water-stressed (WS) chickpea plants. The PN, on an area basis, was negligible in pods compared to leaves and was reduced by water stress (by 26%) only in leaves. WS pod walls and seeds discriminated less against 13CO2 than did the controls. This response was not observed for leaves as is usually the case. Pod walls and seeds discriminated less against 13CO2 than did leaves in both WW and WS plants. Measurement of carbon isotope composition in pods may be a more sensitive tool for assessing the impact of water stress on long-term assimilation than is the instantaneous measurement of gas exchange rates. and M. H. Behboudian ... [et al.].
Diurnal patterns of leaf water potential (ΨW), canopy net photosynthetic rate (PN), evapotranspiration rate (E), canopy temperature (Tc), and water use efficiency (WUE) of clusterbean [Cyamopsis tetragonoloba (L.) Taub., cv. Desi] were studied at six phenological stages of plant development under field conditions at CCS Haryana Agricultural University, Hisar. The highest PN, E, and WUE were observed at pod initiation stage (61 DAS). Daily maxima of PN were usually between 11:00 to 14:00 h while those of E and WUE between 12:30 and 16:00 h. PN was mainly dependent on photosynthetically active radiation and E on air temperature (Ta) but the relationships varied at different growth stages. WUE declined with the increase in Ta. At mid-day, ΨW was highest during pod initiation. and A. Kumar ... [et al.].