After the windstorm of November 2004, the ground beetle assemblages (Coleoptera, Carabidae) differentiated after the windstorm into four groups reflecting degree of damaging and forestry management (intact stand, fallen timber in situ, extracted timber, fire). The stand with fallen timber reduced abundances of original species. Removal of timber eliminated sensitive forest species and favored tolerant species, whereas the fire allowed invasions of field species. Later, the assemblages on burned sites converged to those in the unburned sites. Their restoration has a sigmoid-like course.
Independently on the above differentiation and course assemblage succession, episodes of severe drought resulted with a 1–2-years delay in sudden decline of number of individuals and species. Their numbers were restoring after longer humid periods. Because these extremes occur with a considerable regularity, the observed extremes of fluctuations of number of species and individuals represent the variability limits of the Carabid assemblages in such conditions. The Standardized Precipitation Evapotranspiration Index was shown, using the cross-correlation of SPEI and number of individuals and species of Carabids, as a suitable means to explain and predict such changes for the period of 1–2 years.
The paper presents relationship between the Standardised Precipitation Index (SPI) and physiological responses of individual trees in a beech stand using an example of an experimental plot in Bienska valley (Zvolen, Slovakia). SPI is a widely used tool for monitoring both short-term and long-term droughts, and for the assessments of drought impacts on agriculture. Due to the complex ecosystem bonds, monitoring of drought in forests often requires a sophisticated technological approach. The aim of the paper was to correlate the SPI on the physiological responses of trees that were recorded during the performed physiological research (sap flow, and stem circumference increment) at the site in the growing seasons (May to September) of the years 2012-2014. The results revealed a relationship between the index and the physiological responses, although the problem with the impact of other environmental factors has also come up. The secondary correlation, in which soil water potential that significantly affects physiological responses of forest tree species was used as a dependent variable, showed a tighter relationship with the SPI. We found the highest correlation between the soil water potential and the values of SPI aggregated for five weeks. This indicates that the beech forest has a five week resistance to drought stress. The results also enable simple monitoring of the initiation of the drought stress by applying SPI for five weeks.