Hydrological monitoring in small headwater catchments provides the basis for examining complex interrelating hydraulic processes that govern the runoff generation. Contributions of different subsurface runoff mechanisms to the catchment discharge formation at two small forested headwater catchments are studied with the help of their natural isotopic signatures. The Uhlirska catchment (Jizera Mts., Czech Republic) is situated in headwater area of the Lusatian Neisse River. The catchment includes wetlands at the valley bottom developed over deluviofluvial granitic sediments surrounded by gentle hillslopes with shallow soils underlain by weathered granite. The Liz catchment (Bohemian Forest, Czech Republic) is situated in headwater area of the Otava River. It belongs to hillslope-type catchments with narrow riparian zones. The soil at Liz is developed on biotite paragneiss bedrock. The basic comparison of hydrological time series reveals that the event-related stream discharge variations at the Uhlirska catchment are bigger and significantly more frequent than at Liz. The analysis of isotope concentration data revealed different behavior of the two catchments during the major rainfall-runoff events. At Uhlirska, the percentage of the direct runoff formed by the event water reaches its maximum on the falling limb of the hydrograph. At Liz, the event water related fraction of the direct outflow is maximal on the rising limb of the hydrograph and then lowers. The hydraulic functioning of the Uhlirska catchment is determined by communication between hillslope and riparian zone compartments.
This study focuses on modeling hydrological responses of shallow hillslope soil in a headwater catchment. The research is conducted using data from the experimental site Uhlířská in Jizera Mountains, Czech Republic. To compare different approaches of runoff generation modeling, three models were used: (1) onedimensional variably saturated flow model S1D, based on the dual-continuum formulation of Richards’ equation; (2) zero-dimensional nonlinear morphological element model GEOTRANSF; and (3) semidistributed model utilizing the topographic index similarity assumption - TOPMODEL. Hillslope runoff hydrographs and soil water storage variations predicted by the simplified catchment scale models (GEOTRANSF and TOPMODEL) were compared with the respective responses generated by the more physically based local scale model S1D. Both models, GEOTRANSF and TOPMODEL, were found to predict general trends of hydrographs quite satisfactorily; however their ability to correctly predict soil water storages and inter-compartment fluxes was limited. and Studie je zaměřena na modelování hydrologické reakce mělké svahové půdy v pramenné části povodí Nisy, k výzkumu byla použita data z experimentálního povodí Uhlířská. Porovnání různých konceptuálních představ modelování odtoku bylo uskutečněno pro: (1) jednorozměrný model proměnlivě nasyceného proudění S1D; (2) model založený na bezrozměrném nelineárním morfologickém prvku - GEOTRANSF a (3) semi-distribuovaný model využívající principu podobnosti na základě topografického indexu - TOPMODEL. Hydrogramy odtoku ze svahu a změny zásob vody v půdě vypočtené zjednodušenými modely GEOTRANSF a TOPMODEL byly porovnány s odpovídajícími odezvami fyzikálně založeného modelu S1D. Oba modely, GEOTRANSF i TOPMODEL, byly poměrně úspěšné v předpovědi základních trendů hydrogramů odtoku, jejich schopnost správně předpovídat zásoby vody v půdě a toky mezi nimi však byla omezená.
The main objective of this study is to assess the effect of hysteresis of soil hydraulic properties on model predictions of soil water movement in a variably saturated soil. The model predictions are generated by the S1D model, which is based on numerical solution of one-dimensional Richards’ equation. The analysis is made for a loamy sand soil located in a small headwater catchment. The model is used to simulate the development of soil water pressure during three successive vegetation seasons. Three major simulation scenarios are formulated: the first scenario assumes no hysteresis in soil hydraulic properties, the second scenario involves a predefined hypothetical hysteresis, while the third scenario is based on optimized hysteresis, determined through the inverse modeling procedure. The analysis of the simulation results suggests that, in our case, ignoring hysteresis does not lead to any significant deviation of the model predictions from the observed soil water system responses. and Možnosti efektivně matematicky modelovat proudění vody v přirozených půdních formacích omezuje komplikovanost určení půdních hydraulických charakteristik, a to nejen s ohledem na jejich prostorovou a časovou variabilitu, ale také hysterezi. Příspěvek je zaměřen na testování vlivu hystereze na výsledky simulací proudění půdní vody v podmínkách malého horského povodí. Numerický model S1D, řešící Richardsovu rovnici v jednorozměrném tvaru, byl použit k výpočtu sezónního vývoje tlaku půdní vody. V simulacích byla alternativně uvažována hystereze retenční křivky. Odchylky mezi odezvami modelu a měřeními byly minimalizovány optimalizací scaling faktorů. Rozsáhlý srovnávací soubor uskutečněných optimalizací umožnil posoudit rozdíly modelové odezvy dvou hysterezních a jedné nehysterezní varianty a kvantifikovat dopad zanedbání hystereze na přesnost předpovědi modelu. Neuvažování hystereze v našem případě nezhoršuje schopnost modelu popsat změny půdní vlhkosti.
A one-dimensional dual-continuum model (also known as dual-permeability model) was used to simulate the lateral component of subsurface runoff and variations in the natural 18O content in hillslope discharge. Model predictions were analyzed using the GLUE generalized likelihood uncertainty estimation procedure. Model sensitivity was evaluated by varying two separate triplets of parameters. The first triplet consisted of key parameters determining the preferential flow regime, i.e., the volumetric proportion of the preferential flow domain, a first-order transfer coefficient characterizing soil water exchange between the two flow domains of the dual-continuum system, and the saturated hydraulic conductivity of the preferential flow domain. The second triplet involved parameters controlling exclusively the soil hydraulic properties of the preferential flow domain, i.e., its retention curve and hydraulic conductivity function. Results of the analysis suggest high sensitivity to all parameters of the first triplet, and large differences in sensitivity to the parameters of the second triplet. The sensitivity analysis also confirmed a significant improvement in the identifiability of preferential flow parameters when 18O content was added to the objective function. and K simulacím laterální složky podpovrchového proudění a změn koncentrace izotopu kyslíku 18O ve vodě vytékající ze svahu byl použit jednorozměrný model využívající přístupu duálního kontinua. Nejistota modelových předpovědí byla odhadnuta s využitím metody zobecněné věrohodnosti (GLUE). Citlivost modelu byla zjišťována pomocí variací dvou samostatných trojic parametrů. První trojice sestávala z klíčových parametrů pro určení režimu preferenčního proudění, tj. objemového podílu preferenční domény proudění, přenosového koeficientu charakterizujícího výměnu vody mezi oběma doménami duálního systému a nasycené hydraulické vodivosti preferenční domény. Druhá trojice zahrnovala výhradně parametry určující hydraulické charakteristiky preferenční domény proudění, tj. retenční křivku a funkci hydraulické vodivosti. Z výsledků analýzy vyplývá vysoká citlivost modelu na všechny parametry z první trojice a velké rozdíly v citlivostech parametrů druhé trojice. Analýza dále potvrdila významné zlepšení zjistitelnosti parametrů preferenční domény v případě, kdy je do cílové funkce přidána koncentrace izotopu kyslíku 18O.