High salt concentration is a major abiotic stress limiting plant growth and productivity in many areas of the world. Elaeagnus angustifolia L. adapts to adverse environments and is widely planted in the western region of China as a windbreaker and for landscape and soil stabilization. High salt concentrations inhibited photosynthesis of E. angustifolia, but the mechanism is not known. In this paper, RNA-sequencing was used to investigate effects of salt stress on the photosynthetic characteristics of the species. In total, 584 genes were identified and involved in photosynthetic pathways. The downregulation of genes that encode key enzymes involved in photosynthesis and genes correlated to important structures in photosystem and light-harvesting complexes might be the main reason, particularly, the downregulation of the gene that encodes magnesium chelatase. This would decrease the activity of enzymes involved in chlorophyll synthesis and the downregulation of the key gene that encodes Rubisco, and thereby decreases enzyme activity and the protein content of Rubisco., J. Lin, J. P. Li, F. Yuan, Z. Yang, B. S. Wang, M. Chen., and Obsahuje bibliografii
Characterization of different component processes of photosynthesis is useful to understand the growth status of plants and to discover possible unintended effects of genetic modification on photosynthesis in transgenic plants. We focused on the changes in photosynthetic gas-exchange properties, reflectance spectra, and plant growth traits among groups of different transgenic barley T1 (TolT1) and its isogenic controls (TolNT1), TolT1, and group of its own transgenic progenies T2 (TolT2), TolNT1 and its wild type (WT), respectively. Gas-exchange measurements showed that only the net photosynthetic rate (P N) and the light-use efficiency (LUE) differed significantly between TolT1 and TolT2 with no obvious changes of other characteristics. Reflectance measurements indicated that the reflectance ratio was sensitive to identify the differences between two barley groups. Differences in reflectance expressed on an index basis depended on barley groups. The relationship between LUE and the photochemical reflectance index (PRI) at a leaf level among different barley groups of WT, TolNT1, TolT1 and TolT2 did not changed obviously. The differences in the total leaf area per plant (LA) between WT and TolNT1 as well as between TolT1 and TolT2 were significant. This study finally provided a plausible complex explanation for the unintended effects of genetic transformation on photosynthesis-related properties in barley at different levels. Furthermore, it was concluded that the photosynthesis-related properties of transgenic plants based on gas exchange, leaf reflectance, and plant growth measurements responded to the same environment in a more different way between two subsequent generations than to the processes of the gene insertion by Agrobacterium and associated tissue culture., C. X. Sun ... [et al. ]., and Obsahuje bibliografii