Diurnal changes in net photosynthetic rate (PN), chlorophyll (Chl) fluorescence, and stomatal aperture of several hybrid poplar clones subjected to midday light stress were measured in July and August of 1996. Midday depression of PN, photosystem 2 (PS2) efficiency, stomatal conductance (gs), and stomatal aperture was observed in all clones, though at differing rates among them. Non-uniform stomatal closure occurred at noon and at other times, requiring a modification of intercellular CO2 concentration (C1). A linear relationship was found between gs and stomatal aperture. More than half of the photons absorbed by PS2 centre dissipated thermally when subjected to light stress at noon. There was a linear relationship between the rate of PS2 photochemical electron transport (PxPFD) and PN. There was a consensus for two fluorescence indicators (1 - qP/qN and (Fm' - F)/Fm') in assessment of susceptibility of photoinhibition in the clones. According to PN, Chl fluorescence, and stomatal aperture, we conclude that midday depression of photosynthesis can be attributed to both stomatal and non-stomatal limitations. and Shouren Zhang, Rongfu Gao.
The effects of varying leaf temperature (T1) on some ecophysiological characteristics of photosynthesis for Quercus liaotungensis Koiz. under ambient radiation stress around midday on clear summer days were investigated using an IRGA equipped with a temperature-controlled cuvette. Net photosynthetic rate (PN) decreased as T1 increased from 30 to 35 °C as a result of stomatal closure, whereas non-stomatal limitation led to decreased PN in the T1 range of 35-45 °C. Decreased transpiration rate (E) and stomatal conductance (gs) at leaf temperatures above 30 °C were interpreted as a combined 'feedward' effect as a result of enhanced leaf-air vapour pressure deficit (VPD) and stomatal closure. Changes in E from T1 30 to 20 °C depended on VPD when gs was maintained constant. Water use efficiency (WUE) varied inversely with T1 by following a hyperbola. A decrease in intercellular CO2 concentration (Ci) occurred as a result of stomatal closure and a relatively high carboxylation capacity, whereas inactivation of mesophyll carboxylation in combination with photorespiration might be associated with the observed increase in Ci in the T1 range of 40 to 45 °C. and Shouren Zhang ... [et al.].