The effects of phosphate concentration on plant growth and photosynthetic performance were examined in leaves of Zizania latifolia. Plants were grown for four weeks in a solution containing 0, 0.16, 0.64, and 2.56 mM orthophosphate. The results showed that the highest net photosynthetic rate (P N) was achieved at 0.64 mM orthophosphate, which corresponded to the maximum content of organic phosphorus in leaves. Low phosphorus (low-P) content in the culture solution inhibited plant growth, affecting plant height, leaf length, leaf number, tiller number, and fresh mass of leaf, sheath, culm, root, and total plant. In addition, we observed that low-P (0.16 mM) did not hinder the growth of roots but increased the root:shoot ratio, and significantly decreased the chlorophyll content, P N, stomatal conductance, and transpiration rate, but increased the intercellular CO2 concentration. Additionally, low-P significantly decreased the maximum carboxylation rate of Rubisco, the maximum rate of ribulose-1,5-bisphosphate regeneration, the effective quantum yield of PSII photochemistry, photochemical quenching coefficient, and electron transport rate, but increased the nonphotochemical quenching. However, the maximal quantum yield of PSII photochemistry was not significantly affected by low-P. High phosphorus (2.56 mM) caused only a slight decrease in gas-exchange parameters. Therefore, the decrease in growth of P-deficient Z. latifolia plants could be attributed to the lowered photosynthetic rate., N. Yan, Y.-L. Zhang, H.-M. Xue, X.-H. Zhang, Z.-D. Wang, L.-Y. Shi, D.-P. Guo., and Obsahuje seznam literatury
To investigate damaging mechanisms of chilling and salt stress to peanut (Arachis hypogaea L.) leaves, LuHua 14 was used in the present work upon exposure to chilling temperature (4°C) accompanied by high irradiance (1,200 μmol m-2 s-1) (CH), salt stress accompanied by high irradiance (1,200 μmol m-2 s-1) (SH), and high-irradiance stress (1,200 μmol m-2 s-1) at room temperature (25°C) (NH), respectively. Additionally, plants under low irradiance (100 μmol m-2 s-1) at room temperature (25°C) were used as control plants (CK). Relative to CK and NH treatments, both the maximal photochemical efficiency of PSII (Fv/Fm) and the absorbance at 820 nm decreased greatly in peanut leaves under CH and SH stress, which indicated that severe photoinhibition occurred in peanut leaves under such conditions. Initial fluorescence (F0), 1 - qP and nonphotochemical quenching (NPQ) in peanut leaves significantly increased under CH- and SH stress. Additionally, the activity of superoxide dismutase (SOD), one of the key enzymes of water-water cycle, decreased greatly, the accumulation of malondialdehyde (MDA) and membrane permeability increased. These results suggested that damages to peanut photosystems might be related to the accumulation of reactive oxygen species (ROS) induced by excess energy, and the water-water cycle could not dissipate energy efficiently under the stress of CH and SH, which caused the accumulation of ROS greatly. CH and SH had similar damaging effects on peanut photosystems, except that CH has more severe effects. All the results showed that CH- and SH stress has similar damaging site and mechanisms in peanut leaves. and L.-Q. Qin ... [et al.].
Upland cotton (Gossypium hirsutum L.) can move leaves to track the sun throughout the day, so-called leaf diaheliotropic movement. This paper reports an experimental test of the hypothesis that leaf diaheliotropic movement in upland cotton can enhance carbon assimilation and not increase the risk of stress from high energy load. In this experiment, cotton leaves were divided into two groups: one was that leaves could track the sun freely; another was that leaves were retained to the horizontal position. The diaheliotropic leaves recorded higher incident irradiance than the restrained ones, especially in the morning and late afternoon. Compared with restrained leaves, diaheliotropic leaves were generally warmer throughout the day. As expected, diaheliotropic leaves had significantly higher diurnal time courses of net photosynthetic rate (PN) than restrained leaves, except during 14:00-18:00 of the local time. Higher instantaneous water-use efficiency (WUE) was observed in diaheliotropic leaves in the early morning and late afternoon than in the restrained leaves. During the given day, diaheliotropic and restrained leaves had similar diurnal time courses of recovery of maximal quantum yield of PSII photochemistry (Fv/Fm). Diaheliotropic leaves recorded lower or similar photochemical quenching coefficient (qp) than restrained leaves did throughout the day. These results suggest that cotton leaf diaheliotropic movement can improve carbon gain and water use efficiency and not intensify photoinhibition. and Y.-L. Zhang ... [et al.].
Gas exchange and chlorophyll fluorescence parameters of PSII were analyzed in the bracts and leaves of cotton plants after anthesis. Photosynthetic activity and photorespiration were measured in the leaves and bracts of cotton grown under either normal or reduced water-saving drip irrigation. The photosynthetic performance, amount of chlorophyll and Rubisco, and net photosynthesis were greater in the bracts than that in the leaves under water stress. The actual photochemical efficiency of PSII decreased in both the bracts and leaves after anthesis under reduced irrigation. However, the decrease was smaller in the bracts than in the leaves, indicating that the bracts experienced less severe photoinhibition compared to the leaves. The greater drought tolerance of bracts could be related to differences in relative water content, instantaneous water-use efficiency, and photorespiration rate. The ratio of photorespiration to net photosynthesis was much higher in the bracts than in leaves. Furthermore, water deficiency (due to the water-saving drip irrigation) had no significant effect on that ratio in the bracts. We hypothesized that photorespiration in the bracts alleviated photoinhibition and maintained photosynthetic activity., C. Zhang, D.-X. Zhan, H.-H. Luo, Y.-L. Zhang, W.-F. Zhang., and Obsahuje seznam literatury