There is a great uncertainty about the effect of land use change on grassland ecosystem in the Tibetan Plateau. Net ecosystem carbon exchange (NEE) was measured for native alpine meadow with winter grazing (NAM), abandoned cropland/pasture (APL), perennial Elymus nutans (PEN), and annual oat pasture (AO) on the Tibetan plateau, during the growing seasons in 2009 and 2010 using a transparent chamber technique (Licor-6400). AO significantly decreased annual average NEE by 21.6, 23.7, and 15.7% compared to PEN, NAM, and APL during the growing season in 2010. Compared to PEN, NAM, and APL, AO significantly decreased average ecosystem respiration (Re) by 21.1, 52.3, and 39.3%, respectively, during the growing season in 2009. Soil moisture and total aboveground and belowground biomass together explained 39.6% of NEE variation and 71% in gross primary productivity variation. Soil moisture and belowground biomass explained about 83.1% of the Re variation. Our results indicated that it is possible to convert APL to PEN in the region because it could result in a higher NEE together with higher forage production compared to AO., C.-Y. Luo, X.-X. Zhu, S.-P. Wang, S.-J. Cui, Z.-H. Zhang, X.-Y. Bao, L. Zhao, Y. Li, X.-Q. Zhao., and Obsahuje seznam literatury
To address the issue of water eutrophication and to use water more effectively, we conducted experiments on rice (Oryza sativa L.) grown in floating culture. From 2009 to 2011, we compared the photosynthesis and root characteristics of the rice, hybrid line Zhuliangyou 02, grown under a conventional tillage and in a floating culture in Huaihua, the home of hybrid rice. Rice in the floating culture showed a higher net photosynthetic rate and stomatal conductance than that under the conventional tillage. The activities of phosphoenolpyruvate carboxylase and NADP-malic enzyme were 32 and 28% higher, respectively, in rice in the floating culture than under the conventional tillage. Rice in the floating culture also showed significantly greater number of roots, root activity, and antioxidant enzyme activity than that under the conventional tillage. Compared with rice under the conventional tillage, rice in the floating culture had 18 and 24% higher tiller number and effective panicle number, respectively. These results suggested that the floating culture system can promote rice production through enhancing root absorption, increasing effective panicle number, and improving the photosynthetic rate. In addition, rice cultivated in the floating culture could remove excess nutrients from water, which addresses the problems of a lack of arable land and water pollution., H.-X. Wu ... [et al.]., and Obsahuje bibliografii