When dark-acclimated cotton (Gossypium hirsutum L. cv. Coker 312) leaves, pre-treated with lincomycin to inhibit chloroplast protein repair processes, were exposed to 10 °C and a PPFD of 500 μmol m-2 s-1, the proportion of excitation energy entering photochemistry (P) increased, but only to 5 % of the total energy absorbed at steady state levels of P, which were reached at 40 min of irradiation. Thermal dissipation (D) of absorbed energy increased throughout the 360 min irradiation period and accounted for the greatest portion of absorbed energy at 10 °C. When D was partitioned into constitutive (DCON), regulated (DREG), and photoinhibitory (DPI) components, it was primarily composed of DREG, the readily reversible portion of D. However, the induction of D was slow at 10 °C. Sixty minutes were required for D to reach 70 % of the energy absorbed. Considerable absorption of energy in excess of that utilized in photochemistry or dissipated thermally (designated as E) occurred, especially during induction of P and D. Over the irradiation period, the time-dependent averaged E exhibited an inverse, linear relationship with the ratio of variable (Fv) to maximum (Fm) fluorescence (PS2 efficiency) and a linear relationship with DPI. We propose that time-dependent averaged E may be useful for estimating the potential for damage to PS2 under stressful environmental conditions. and D. Kornyeyev, B. A. Logan, A. S. Holaday.
A data base was generated for quantifying effects of thermal time (degree-days) on the appearance of new leaves, the expansion of such leaves to maximum area, their death, the appearance of new internodes below the node associated with such leaves, and the extension of these internodes to maximum length. The data base for a list of crop (agronomic and horticultural), weed, and native Tallgrass Prairie plants has been summarized, with equations for the above events as a function of degree days, with appropriate base temperatures and maximum cut-off temperatures, in a Java applet which is available at a website with the URL <http://th190-50.agn.uiuc.edu>. Associated graphical plots such as shown in this paper are also given. Branching behavior was accounted for. These events predict the effect of thermal time on leaf age and its height in the plant canopy, both important factors needed for upscaling functions for leaf behavior to those for behavior of the plant canopy. The data base is evolving to include coefficients for other species. Coefficients are used to predict the leaf area index of the canopy, which is important for predicting evapotranspiration from the crop and the protection of the soil from erosion. and X. Pan ... [et al,].
Field studies were conducted to investigate ontogenic changes in leaf photosynthesis and chloroplast ultrastructure of a single cotton (Gossypium hirsutum L.) leaf subtending the fruit. A 20-d old leaf was the most physiologically active with net photosynthetic rate (PN) of 16.5 μmol m-2 s-1 and nitrogen (N) concentration of 168 mmol m-2. These values declined with leaf age and a close relationship existed between them. Concurrent with declines in PN, ultrastructural alterations occurred in the chloroplast: the 20-d old leaf had increased grana number and thylakoids per granum and a few plastoglobuli. Afterwards, the grana number and thylakoids per granum declined with leaf age indicating disintegrated grana and stroma lamellae. Concomitant with disintegrated membrane system was the presence of numerous large plastoglobuli. The PN was closely related to grana number and thylakoids per granum suggesting that the decline in PN with leaf age was associated with ultrastructural changes in the chloroplast. and Bhaskar Rao Bondada, D. M. Oosterhuis.
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (PN) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf PN of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues. and Duli Zhao, D. M. Oosterhuis, C. W. Bednarz.
Gas exchange and chlorophyll fluorescence parameters of PSII were analyzed in the bracts and leaves of cotton plants after anthesis. Photosynthetic activity and photorespiration were measured in the leaves and bracts of cotton grown under either normal or reduced water-saving drip irrigation. The photosynthetic performance, amount of chlorophyll and Rubisco, and net photosynthesis were greater in the bracts than that in the leaves under water stress. The actual photochemical efficiency of PSII decreased in both the bracts and leaves after anthesis under reduced irrigation. However, the decrease was smaller in the bracts than in the leaves, indicating that the bracts experienced less severe photoinhibition compared to the leaves. The greater drought tolerance of bracts could be related to differences in relative water content, instantaneous water-use efficiency, and photorespiration rate. The ratio of photorespiration to net photosynthesis was much higher in the bracts than in leaves. Furthermore, water deficiency (due to the water-saving drip irrigation) had no significant effect on that ratio in the bracts. We hypothesized that photorespiration in the bracts alleviated photoinhibition and maintained photosynthetic activity., C. Zhang, D.-X. Zhan, H.-H. Luo, Y.-L. Zhang, W.-F. Zhang., and Obsahuje seznam literatury
Relationships between leaf nitrogen (N) content and leaf gas exchange components of a single cotton (Gossypium hirsutum L.) leaf subtending the fruit during ontogeny were investigated under field conditions. A 20-d old leaf exhibited the highest physiological activity characterized by net photosynthetic (PN) and transpiration (E) rates, stomatal conductances to CO2 exchange (gsCO2) and water vapor transfer (gsH2O), and nitrogen (N) content. With the advent of leaf senescence, the gas exchange rates declined as exhibited by the 30-, 40-, and 60-d old leaves. Regression analysis indicated close relationships between gsCO2 and PN, and gsH2O and E as the leaves advanced towards senescence. Both PN and gsCO2 were related to N as they declined with leaf age. Thus, the declines in PN were associated with stomatal closure and removal of N during leaf ontogeny. and B. R. Bondada, D. M. Oosterhuis.