In order to elucidate the drought resistance and high-yield mechanism of hybrid millet, we studied the influence of drought stress on the photosynthetic characteristics and dry matter accumulation. Our results revealed that drought stress caused lesser reduction in the net photosynthetic rate, maximal quantum yield of PSII photochemistry, excitation energy capture efficiency of PSII reaction centers and in the yield of hybrid millet compared to normal millet. When drought stress occurred in the jointing stage, the percentage decrease of PN, Fv/Fm, Fv′/Fm′, and the yield of Zhangzagu3 cultivar compared to control were 27.9%, 2.6%, 25. 5%, and 1.9%, respectively, the percentage decrease of Zhangzagu5 were 37.6%, 3.9%, 28.3%, and 16.7%, respectively, the decrease percentage of Datong29 were 60.1%, 6.4%, 4%, and 23.4%, respectively. Hybrid millet showed the similar reduction in the parameters referred above, when drought stress occurred at the heading stage, but the percentage decrease was much higher than that at the jointing stage. We concluded that hybrid millet showed higher drought resistance than normal millet., H. B. Lu, Y. M. Qiao, X. C. Gong, H. Q. Li, Q. Zhang, Z. H. Zhao, L. L. Meng., and Obsahuje bibliografii