French bean (Phaseolus vulgaris L.) cotyledons lost most of their reserve substances during several early days of germination and turned green. In cotyledon mesophyll cells of one-week-old seedlings, plastids were represented predominantly by amyloplasts (starch grains) and chloroamyloplasts, and the cells appeared to be metabolically highly active. Cell heterogeneity associated with distance of the cells from cotyledon vascular bundles was evident. Only mesophyll cells near to the bundles were rich in plastids. In two-weeks-old intact bean plants, the cotyledons were yellow and shrunken, and their cells were nearly "empty". The plastids in them were represented by senescent plastids (gerontoplasts) only. In the gerontoplasts as well as freely in cytosol, fluorescent lipoid inclusions were accumulated. This cotyledon development was more or less independent of irradiance. In "decapitated" bean plants, senescence of mesophyll cells and plastids was slowed down considerably, and the life span of the cotyledons was prolonged. and J. Kutík, N. Wilhelmová, J. Snopek.
Drought stress is one of the main environmental factors limiting plant growth and productivity of many crops. Elevated carbon dioxide concentration (eCO2) can ameliorate, mitigate, or compensate for the negative impact of drought on plant growth and enable plants to remain turgid and functional for a longer period. In order to investigate the combined effects of eCO2 and drought stress on photosynthetic performance and leaf structures, we analyzed photosynthetic characteristics and structure and ultrastructure of cucumber leaves. The decline in net photosynthetic rate under moderate drought stress occurred due to stomatal limitation alone, while under severe drought stress, it was the result of stomatal and nonstomatal limitations. Conversely, eCO2 improved photosynthetic performance under moderate drought stress, increased the lengths of the palisade cells and the number of chloroplasts per palisade cell under severe drought stress, and significantly increased the grana thickness under moderate drought stress. Additionally, eCO2 significantly decreased stomatal density, stomatal widths and stomatal aperture on the abaxial surface of leaves under moderate drought stress. In conclusion, eCO2 can alleviate the negative effects of drought stress by improving the drought resistance of cucumber seedlings through stomatal modifications and leaf structure., B. B. Liu, M. Li, Q. M. Li, Q. Q. Cui, W. D. Zhang, X. Z. Ai, H. G. Bi., and Obsahuje bibliografii
The aim of our study was to investigate the underlying molecular mechanisms of exogenously supplied trehalose affecting wheat photosynthesis under heat stress. The amount of ATP synthase (ATPase), oxygen-evolving enhancer protein (OEE), PsbP, Rubisco, chloroplast fructose-bisphosphate aldolase (FBPA), and ferredoxin-NADP(H) oxidoreductase (FNR) were downregulated, while PSI reaction center subunits were upregulated under heat stress. However, in the trehalose-pretreated groups, the amount of FNR, cytochrome b6f complex, PSI reaction center subunits, ATPase, FBPA, and Rubisco were upregulated under normal growth conditions and heat stress. Besides, during the recovery period, the upregulation in CAB, PsbP, OEE2, and ATPase suggested that trehalose pretreatment might help to the recovery of PSII and PSI. These results indicate that trehalose pretreatment effectively regulates the levels of the photosynthesis-related proteins and relieves the damage of heat stress to wheat chloroplast., Y. Luo, H. Y. Liu, Y. Z. Fan, W. Wang, Y. Y. Zhao., and Obsahuje bibliografii
In crowns of chestnut trees the absorption of radiant energy is not homogeneous; leaves from the south (S) side are the most irradiated, but leaves from the east (E) and west (W) sides receive around 70 % and those from north (N) face less than 20 % of the S irradiation. Compared to the S leaves, those from the N side were 10 % smaller, their stomata density was 14 % smaller, and their laminae were 21 % thinner. N leaves had 0.63 g(Chl) m-2, corresponding to 93 % of total chlorophyll (Chl) amount in leaves of S side. The ratios of Chl a/b were 2.9 and 3.1 and of Chl/carotenoids (Car) 5.2 and 4.8, respectively, in N and S leaves. Net photosynthetic rate (PN) was 3.9 µmol(CO2) m-2 s-1 in S leaves, in the E, W, and N leaves 81, 77, and 38 % of that value, respectively. Morning time (10:00 h) was the period of highest PN in the whole crown, followed by 13:00 h (85 % of S) and 16:00 h with 59 %. Below 500 µmol m-2 s-1 of photosynthetic photon flux density (PPFD), N leaves produced the highest PN, while at higher PPFD, the S leaves were most active. In addition, the fruits from S side were 10 % larger than those from the N side. and J. Gomes-Laranjo ... [et al.].
Efficient degradation of damaged D1 during the repair of PSII is carried out by a set of dedicated FtsH proteases in the thylakoid membrane. Here we investigated whether the evolution of FtsH could hold clues to the origin of oxygenic photosynthesis. A phylogenetic analysis of over 6000 FtsH protease sequences revealed that there are three major groups of FtsH proteases originating from gene duplication events in the last common ancestor of bacteria, and that the FtsH proteases involved in PSII repair form a distinct clade branching out before the divergence of FtsH proteases found in all groups of anoxygenic phototrophic bacteria. Furthermore, we showed that the phylogenetic tree of FtsH proteases in phototrophic bacteria is similar to that for Type I and Type II reaction centre proteins. We conclude that the phylogeny of FtsH proteases is consistent with an early origin of photosynthetic water oxidation chemistry., S. Shao, T. Cardona, P. J. Nixon., and Obsahuje bibliografické odkazy
One-year-old olive trees (cv. Koroneiki) were grown in plastic containers of 50 000 cm3 under full daylight and 30, 60, and 90 % shade for two years. The effects of shade on leaf morphology and anatomy, including stomatal density and chloroplast structure, net photosynthetic rate (PN), stomatal conductance (gs), and fruit yield were studied. Shade reduced leaf thickness due to the presence of only 1-2 palisade layers and reduced the length of palisade cells and spongy parenchyma. The number of thylakoids in grana as well as in stroma increased as shade increased, while the number of plastoglobuli decreased in proportion to the reduced photosynthetically active radiation (PAR). The higher the level of shade, the lower the stomatal and trichome density, leaf mass per area (ALM), gs, and PN. Shade of 30, 60, and 90 % reduced stomatal density by 7, 16, and 27 %, respectively, while the corresponding reduction in PN was 21, 35, and 67 %. In contrast, chlorophyll a+b per fresh mass, and leaf width, length, and particularly area increased under the same shade levels (by 16, 33, and 81 % in leaf area). PN reduction was due both to a decrease in PAR and to the morphological changes in leaves. The effect of shade was more severe on fruit yield per tree (32, 67, and 84 %) than on PN indicating an effect on bud differentiation and fruit set. The olive tree adapts well to shade compared with other fruit trees by a small reduction in stomatal and trichome density, palisade parenchyma, and a significant increase in leaf area. and K. Gregoriou, K. Pontikis, S. Vemmos.
The effects of NaCl treatment were analysed in two species of considerably different resistance. In glycophyte, the content of ascorbate decreased but lipophilic antioxidants (α-tocopherol, plastochromanol, and hydroxy-plastochromanol) increased due to 150 mM NaCl. In halophyte, 300 mM NaCl caused a significant increase in hydrophilic antioxidants (ascorbate, total glutathione) but not in the lipophilic antioxidants. The redox states of plastoquinone (PQ) and P700 were also differently modulated by salinity in both species, as illustrated by an increased oxidation of these components in glycophyte. The presented data suggest that E. salsugineum was able to avoid a harmful singlet oxygen production at PSII, which might be, at least in part, attributed to the induction of the ascorbate-glutathione cycle. Another important cue of a high salinity resistance of this species might be the ability to sustain a highly reduced states of PQ pool and P700 under stress, which however, drastically affect the NADPH yield., M. Wiciarz, E. Niewiadomska, J. Kruk., and Obsahuje bibliografii
EGY1 (ethylene-dependent gravitropism-deficient and yellow-green 1) is an intramembrane metalloprotease located in chloroplasts, involved in many diverse processes including chloroplast development, chlorophyll biosynthesis, and the ethylene-dependent gravitropic response. Plants deprived of this protease display pleiotropic effects such as the yellow-green early senescence phenotype and a poorly developed thylakoid system membrane in the mature chloroplasts. We applied the GC/MS technique to analyze the changes in fatty acid composition in two egy1 mutant lines. We used DAPI staining and transmission electron microscopy methods to establish the number of nucleoids and the amount of chloroplast DNA. Our results indicated that the lack of EGY1 protease led to a dramatic overaccumulation and a dramatic decrease in the content of linolenic acid C18:3 and hexadecatrienoic acid C16:3, respectively. The amount of chloroplast DNA and the number of nucleoids were severely reduced in egy1 mutant lines. Similarly, a reduced correlation between DAPI and autofluorescence signal was observed, which may indicate some perturbations in nucleoid anchoring.
We investigated the photosynthesis and leaf development of cherry tomato seedlings grown under five different combinations of red and blue light provided by light-emitting diodes (LEDs). Fresh biomass increased significantly under treatments with blue light percentages of 50, 60, and 75%, with 50% blue-light-grown seedlings accumulating significantly more dry mass. The 25% blue-light-grown seedlings were obviously weaker than those from the other LED treatments. An increase in net photosynthetic rate upon blue light exposure (25-60%) was associated with increases in leaf mass per unit leaf area, leaf area, leaf density, stomatal number, chloroplast and mesophyll cell development, and chlorophyll contents. Our results imply that photosynthesis and leaf development in cherry tomato seedlings are associated with both the proportion and quantity of blue light., X. Y. Liu, X. L. Jiao, T. T. Chang, S. R. Guo, Z. G. Xu., and Obsahuje bibliografii
The microstructure of leaves and ultrastructure of chloroplasts were examined in tomato (Lycopersicon esculentum L.) plants treated with elevated temperature. Plants were exposed to 35°C for 30 d after florescence. The plants grown continuously under 25°C served as controls. Compared with the controls, the net photosynthetic rate (PN) in stressed plants decreased significantly. Stomatal conductance, intercellular CO2 concentrations, the rate of transpiration, and the limitation of stomatal conductance showed that the decrease in PN was caused mainly by nonstomatal restrictions. Meanwhile, stomata density increased significantly in the stressed plants. The stomata status of opening and closing became disorganized with a prolonged 35°C exposure. The damage of chloroplast membrane occurred earlier and was more serious in the plants under elevated temperature. At the same time, the thylakoids were loosely distributed with lesser grana, but the number of lipid droplets increased in chloroplasts. The number of starch grains in chloroplasts increased first and then decreased. In addition, the length of the main nerve in leaves increased and the main vein showed distortion in the plants stressed by 35°C. An increase was observed in the number of cells on the abaxial side of the main vein and these cells were overly congregated. The thickness of a vertical section became thinner in the stressed leaves. The cells of the upper epidermis thinned, and the ratio of palisade tissue to spongy tissue decreased. Generally, the photosynthetic apparatus of tomato changed significantly and the changed chloroplast ultrastructure might be one of the important reasons that caused the decrease of PN under 35°C., J. Zhang, X. D. Jiang, T. L. Li, X. J. Cao., and Obsahuje bibliografii