We investigated the effects of supplementary KNO3 and NaCl on one-year-old, potted Valencia orange (Citrus sinensis) scions grafted on Iranian mandarin Bakraii [Citrus reticulate × Citrus limetta] (Valencia/Bakraii) and Carrizo citrange [C. sinensis × Poncirus trifoliata] (Valencia/Carrizo) rootstocks. After watering plants for 60 days with 50 mM NaCl, the lowest reduction in dry mass, stomatal conductance, and chlorophyll (Chl) content was found in Valencia/Bakraii. Bakraii accumulated more Cl- and Na+ in roots and transferred less to Valencia leaves compared with Carrizo rootstock. Moreover, higher net photosynthetic rate was found in Valencia/Bakraii than those on Carrizo rootstock. NaCl caused a decrease in the maximal efficiency of PSII photochemistry (Fv/Fm) and effective quantum yield (ΦPSII) but elevated coefficient of nonphotochemical quenching. Salinity reduced Ca2+, Mg2+, and total N contents, and increased Na+/K+ ratio in leaves and roots of both grafting combinations. Salinity increased K+ and proline content in leaves and decreased K+ concentrations in roots of both grafting combinations. In salinized plants, nitrate supplementation (10 mM KNO3) reduced leaf abscission, Cl-, Na+, Na+/K+, and Ca2+ concentrations in leaves and roots of both combinations. K+ and N concentrations and proline increased in leaves of the nitrate-supplemented salinized plants. Supplementary nitrate increased leaf number and area, stem elongation, Chl content, Fv/Fm, and ΦPSII and stimulated photosynthetic activity. Thus, nitrate ameliorated the deleterious effects of NaCl stress and stimulated the plant metabolism and growth. It can be used as a vital treatment under such condition., D. Khoshbakht, A. Ghorbani, B. Baninasab, L. A. Naseri, M. Mirzaei., and Obsahuje bibliografii
The effects of polyamines (PAs) on salt stress in Bakraii (Citrus reticulata × Citrus limetta) seedlings were studied. Foliar treatments by putrescine (Put), spermidine (Spd), and spermine (Spm) (0, 0.5, and 1 mM) were applied during the salinity period
(0 and 75 mM of NaCl). PA-treated seedlings showed a lower content of Na+ and Cl- in leaves. Application of PAs increased net photosynthetic rate in salt-stressed plants and it contributed to the enhanced growth parameters. PAs application considerably induced growth improvement in Bakraii seedlings which was found to be associated with reduced electrolyte leakage, increased relative water content, chlorophyll fluorescence parameters, activities of key antioxidant enzymes, as well as increased photosynthetic pigment concentration under saline regime. These results showed the promising use of PAs, especially of Spd and Spm, for reducing the negative effects of salinity stress and improving the growth of citrus seedlings., D. Khoshbakht, M. R. Asghari, M. Haghighi., and Obsahuje bibliografii