A cheap chlorophyll (Chl) a fluorescence imaging system was developed for measuring leaf areas of 30×45 cm. Uniform saturating irradiances were created using CuSO4 filtered radiation from stroboscopes. The system was tested using maize leaves treated with diuron. Comparison was made with a small-area-measuring pulse amplified modulation Chl fluorometer. and P. Lootens, P. Vandecasteele.
Effíciency of the energy transformation for CO2 fixation (E), and kinetics of the initial 02-mediated electron transport of Spimlina platemis (Gom.) Geitl. and Chlorella vulgaris Beijerinck cells were measured after adaptation to various growth irradiances (7) by means of the delayed fluorescence (DF) induction curves. Maxima of the membrane potential expenses during induction period were observed at I half saturating oxygen evolution; they were shifted according to growth 1 remaining higher in Spirulina than in Chlorella. The alterations of absorbance and fluorescence spectra at 25 oC after adaptation to / demonstrated changes in composition of pigments of algae, created to compensate for the imbalance in radiation absorption between the two photosystems. For Spirulina cells, the value of E was higher after growing under low /, or under blue radiation absorbed mainly by photosystem (PS) 1 (400-500 nm) with excitation by yellow (570 nm) radiation. For Chlorella cells, it was also higher after growing under low I. Under such conditions the half-rise time for DP-phase of DF induction curve decreased, which reflected an acceleration of kinetics of the initial electron transport between photosystems. An opposite situation was observed with Spirulina cells grown under high I or yellow radiation, and Chlorella cells from high I. Enhancement of effective PS2/PS1 ratio associated with decrease of reaction centre (RC) 2/RCl stoichiometry may be a cause of the increase of E and high membrane energization under saturating I in algae adapted to low 1.
The photosynthetic election transport activities in beet spinách thylakoids were studied using ruthenium chloride as an electron acceptor, Like potassium ferricyanide, RUCI3 supported the non-cyclic electron flow with net evolution of oxygen. The rate of oxygen evolution was at its maximum with 0.5 mM RUCI3 at pH of 8.0 and the election flow coupled to translocation of protons into the thylakoid vesicles. Ruthenium chloride-supported oxygen evolution was inhibited by specific photosynthetic electron tiansport inhibitors like diuron, dibromothymoquinone, potassium cyanide, and mercuric chloride Unlike ferricyanide, the RuCl3-supported oxygen evolution was totally inliibited by potassium cyanide and mercuric chloride at both pH 8.0 and 6.5. Since potassium cyanide and mercuric chloride mostly interrupt the electron flow at plastocyanin level, RUCI3 probably accepts electrons mostly from photosystem 1 or its near vicinity. Besides electron acceptance, RUCI3 suppresses the photophosphoiylation activity in a manner similar to energy transfer inhibitors.
Photon-induced absorbance changes at 830 nm (ΔA830) related to redox transformations of P700, primary electron donor of photosystem 1 (PS1), were examined in barley leaves treated with diuron and methyl viologen. In such leaves, only soluble reductants localized in chloroplast stroma could serve as electron donors for P700+. Δ A830 were induced by 1-min irradiation of leaves with "actinic light" (AL, 700±6 nm) of various irradiances. Two exponentially decaying components with half-times of 2.75 (fast component, relative magnitude of 62 % of ΔA830) and 11.90 s (slow one, 38 % of ΔA830) were distinguished in the kinetics of dark relaxation of ΔA830 after leaf irradiation with saturating AL. The components reflecting P700+ dark reduction in two units of PS1 differed in the rate of electron input from stromal reductants. The decline in AL irradiance reduced steady state δA830 magnitude, which was also accompanied by a decrease in the contribution of fast component to the overall P700+ dark reduction kinetics. The photon-response curves were obtained separately for rapidly and slowly decaying δA830. The values of half-saturating irradiance were 0.106 and 0.035 μmol m-2 s-1 for rapidly and slowly reduced PS1 units, respectively. The ratio of rate constants of P700+ dark reduction for rapidly and slowly reduced PS1 units was 1.4 times higher than the ratio of their half-saturating irradiances thus indicating higher relative antenna size in rapidly reduced PS1 units. The latter finding, taken together with higher relative amount of P700, favours the view that rapidly and slowly reduced PS1 units reflect P700+ reduction by stromal reductants in spatially separated PS1α and PS1β complexes. and E. A. Egorova, N. G. Bukhov.
The sensitivity of marine algal biotest ISO 10253 to the photosystem 2 (PS2) herbicide diuron (DCMU) was determined. Using the diatom Phaeodactylum tricornutum, we found that the algal growth rate was reduced to 50 % of the control value (EC50) for ca. 200 nM DCMU. This value is too high to allow a practical application of the biotest for concentrations of the PS2 herbicides found in natural waters. The mechanisms causing the low sensitivity of the biotest to the PS2 herbicide were investigated by measuring parameters of photosynthetic apparatus in the diatom prior and during the biotest. The apparent dissociation constant for DCMU in P. tricornutum found by measurements of inhibition of oxygen evolution and of variable fluorescence was in the range 60-90 nM. This should lead to a much higher sensitivity of the biotest than found in our experiments. The low biotest sensitivity is caused by an acclimation to sub-lethal DCMU concentrations. The acclimation is manifested by the chlorophyll content per cell that is increasing with the DCMU concentration. During a prolonged exposure to sub-lethal herbicide concentrations, we observed also a selection of DCMU resistant organisms indicating that also an adaptation may decrease the test sensitivity. The biotest sensitivity may increase when the acclimation and adaptation are limited by shortening of the experiment duration. and J. Soukupová ... [et al.].