Extreme conditions, such as drought, high temperature, and solar irradiance intensity, are major factors limiting growth and productivity of grapevines. In a field experiment, kaolin particle film application on grapevine leaves was examined during two different summer conditions (in 2012 and 2013) with the aim to evaluate benefits of this practice against stressful conditions hindering photochemical processes. We used chlorophyll a fluorescence to investigate attached leaves. Two months after the application, during the hottest midday, the kaolin-treated plants showed by the JIP test significantly higher quantum yield of PSII photochemistry, flux ratios, maximum trapped excitation flux of PSI, absorption flux, electron transport flux, maximum trapped energy flux per cross section, and performance index than plants under control conditions in the warmer year. On the contrary, the treated plants showed a lower initial slope of relative variable fluorescence and a decrease in the absorption and electron transport per cross section. The JIP test showed higher efficiency of PSII in the plants treated with kaolin mainly in 2013 (higher temperature and drought). Our results supported the hypothesis that the accumulation of active PSII reaction centres was associated with decreased susceptibility to photoinhibition in the kaolin-treated plants and with more efficient photochemical quenching. Grapevines in the Douro Region seems to profit from the kaolin application., L.-T. Dinis, H. Ferreira, G. Pinto, S. Bernardo, C. M. Correia, J. Moutinho-Pereira., and Obsahuje seznam literatury
Plants experience multiple abiotic stresses during the same growing season. The implications of submergence with and without saline water on growth and survival were investigated using four contrasting rice cultivars, FR13A (submergence-tolerant, salinity-susceptible), IR42 (susceptible to salinity and submergence), and Rashpanjor and AC39416 (salinity-tolerant, submergence-susceptible). Though both FR13A and IR42 showed sensitivity to salinity, FR13A exhibited higher initial biomass as well as maintained greater dry mass under saline condition. Greater reduction of chlorophyll (Chl) contents due to salinity was observed in the susceptible cultivars, including FR13A, compared to the salinity-tolerant cultivars. Exposure of plants to salinity before submergence decreased the survival chance under submergence. Yet, survival percentage under submergence was greater in FR13A compared to other cultivars. Generally, the reduction in the Chl content and damage to PSII were higher under the submergence compared to salinity conditions. The submergence-tolerant cultivar, FR13A, maintained greater quantities of Chl during submergence compared to other cultivars. Quantification of the Chl a fluorescence transients (JIP-test) revealed large cultivar differences in the response of PSII to submergence in saline and nonsaline water. The submergence-tolerant cultivar maintained greater chloroplast structural integrity and functional ability irrespective of the quality of flooding water., R. K. Sarkar, Anuprita Ray., and Obsahuje seznam literatury