The physiological response of plants to triple foliar biofertilization with cyanobacteria and green algae under the conditions of limited use of chemical fertilizers was investigated. Triple foliar biofertilization with intact cells of Microcystis aeruginosa MKR 0105, Anabaena sp. PCC 7120, and Chlorella sp. significantly enhanced physiological performance and growth of plants fertilized with a synthetic fertilizer YaraMila Complex (1.0, 0.5, and 0.0 g per plant). This biofertilization increased the stability of cytomembranes, chlorophyll content, intensity of net photosynthesis, transpiration, stomatal conductance, and decreased intercellular CO2 concentration. Applied monocultures augmented the quantity of N, P, K in plants, the activity of enzymes, such as dehydrogenases, RNase, acid or alkaline phosphatase and nitrate reductase. They also improved the growth of willow plants. This study revealed that the applied nontoxic cyanobacteria and green algae monocultures have a very useful potential to increase production of willow, and needed doses of chemical fertilizers can be reduced., M. Grzesik, Z. Romanowska-Duda, H. M. Kalaji., and Obsahuje bibliografii
The treatment of green algae Chlorococcum lobatum with the herbicide BASTA containing phosphinothricin lead to a significant decrease in the level of peak M2 of the chlorophyll fluorescence induction curve. This agrees with the suggestion that glutamine synthetase activity affects this region of the induction curve.
Inactivation of photosynthesis during atmospheric and osmotic (highly concentrated NaCl or sucrose solutions) dehydration was monitored by measurement of chlorophyll fluorescence induction (OIP-phase, Kautsky-curves) in three lichen species. The induction curves were changed in a very similar way by all three treatments. All dehydration effects were rapidly reversible after rehydration. At relatively mild water stress, the rise time to the transient peak Fp was prolonged, and the variable part of fluorescence was diminished. In addition, at severe water stress, a considerable decline of the F0 value was observed. For NaCl treatment this effect started at water potentials <-8.5 MPa in P. aphthosa, <-12 MPa in H. physodes, and <-21 MPa in L. pulmonaria. Above these water potentials, our observations are in agreement with values from desiccation-tolerant algae, higher plants, and lichens, where an inactivation on the photosystem 2 (PS2) donor side has been postulated. At very low water potentials, the decrease in F0 probably monitors changes in the organization of the antenna apparatus of PS2. and M. Jensen, Samira Chakir, G. B. Feige.
The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested cyanobacterial species than in three green algal species and one diatom species. Hence the inhibitory effect of H2O2 is especially pronounced for cyanobacteria. A specific damage of the photosynthetic apparatus was demonstrated by changes in 77 K fluorescence emission spectra. Different handling of oxidative stress and different cell structure are responsible for the different susceptibility to H2O2 between cyanobacteria and other phytoplankton species. This principle may be potentially employed in the development of new agents to combat cyanobacterial bloom formation in water reservoirs. and M. Drábková ... [et al.].