The effects of drought on thylakoid acyl lipid composition, photosynthetic capacity (P max), and electrolyte lekage were evaluated in two-months-old peanut cultivars (57-422, 73-30, GC 8-35) growing in a glasshouse. For lipid studies, plants were submitted to three treatments by withholding irrigation: control (C), mild water stress (S1), and severe water stress (S2). Concerning membrane and photosynthetic capacity stability, drought was imposed by polyethylene glycol (PEG 600). In the cv. 73-30 a sharp decrease in the content of thylakoid acyl lipids was observed, already under S1 conditions, whereas cv. 57-422 was strongly affected only under S2. Cv. GC 8-35 had the lowest content of acyl lipids under control conditions, a significant increase under S1 conditions, and only under S2 a decrease occurred. Thus concerning lipid stability, cv. 73-30 was the most sensitive. Among lipid classes, phospholipids and galactolipids were similarly affected, as was MGDG relatively to DGDG. Water deficit imposed by PEG induced a higher increase in electrolyte leakage in cv. 73-30 than in the other cvs. A positive relationship between acyl lipid concentration and membrane integrity was found in all studied cvs. A positive association between acyl lipid concentration, membrane integrity, and P max was found in the cvs. 57-422 and 73-30. and J. A. Lauriano ... [et al.].
Cyanobacteria Spirulina platensis and Nostoc linckia were grown in the presence of 5 mM and 50 mM glucose or 5 mM mannose, non-metabolisable glucose analogue that effectively triggers the repression of photosynthesis. Glucose evoked active cyanobacterial growth but chlorophyll (Chl) content decreased to some extent and porphyrins were excreted. The content of monogalactosyldiacylglycerol decreased in glucose-grown cyanobacteria and that of phosphatidylglycerol increased substantially. Mannose inhibited cyanobacteria growth as well as Chl synthesis, however, phosphatidylglycerol contents were higher than in respective control samples. In cyanobacterial cells glucose may not only inhibit photosynthetic processes, but also cause structural transformations of membranes which may be necessary for the activity of respiratory electron transport chain components under heterotrophic conditions. and N. F. Mykhaylenko ... [et al.].
Overexpression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) in tomato increased
cis-unsaturated fatty acid content in phosphatidylglycerol (PG) of thylakoid membrane. By contrast, suppressing the expression of LeGPAT decreased the content of cis-unsaturated fatty acid in PG. Under salt stress, sense transgenic plants exhibited higher activities of chloroplastic antioxidant enzymes, lower content of reactive oxygen species (ROS) and less ion leakage compared with the wild type (WT) plants. The net photosynthetic rate (PN) and the maximal photochemical efficiency (Fv/Fm) of photosystem II (PSII) decreased more slightly in sense lines but more markedly in the antisense ones, compared to WT. D1 protein, located in the reactive center of the PSII, is the primary target of photodamage and has the highest turnover rate in the chloroplast. Under salt stress, compared with WT, the content of D1 protein decreased slightly in sense lines and significantly in the antisense ones. In the presence of streptomycin (SM), the net degradation of the damaged D1 protein was faster in sense lines than in other plants. These results suggested that, under salt-stress conditions, increasing
cis-unsaturated fatty acids in PG by overexpression of LeGPAT can alleviate PSII photoinhibition by accelerating the repair of D1 protein and improving the activity of antioxidant enzymes in chloroplasts. and Y. L. Sun ... [et al.].