Non-photochemical quenching of chlorophyll fluorescence (qN) and its three components (qNf, qNm, and qNs) in the flag leaves of wheat grown in the field were studied by a fluorometer PAM-2000 on clear days. The diurnal variation patterns of qN in just fully extended (JFEL) and aging leaves (AL) were similar, but qNm declined markedly in JFEL while it remained at a relatively high level in AL under strong sunlight at noon. Furthermore, at midday qNf was higher than qNs in JFEL, but much lower in AL. The results show the relative contributions of different mechanisms in preventing the photosynthetic apparatus from photodamage change during leaf development. and S.-S. Hong ... [et al.].
The review summarizes results concerning photosynthetic systems with chlorophylls and carotenoids obtained by means of spectral methods such as polarized radiation, photoacoustic spectroscopy, delayed luminescence, thermal deactivation, and leading to construction of model systems. and D. Frąckowiak, B. Smyk.
The effect of high irradiance (HI, photosynthetically active photon flux density of 1 300 µmol m-2 s-1) on net photosynthetic rate (PN), chlorophyll fluorescence parameters, and xanthophyll cycle components were studied in fruit tree bayberry leaves. HI induced the photoinhibition and inactivation of photosystem 2 (PS2) reaction centres (RCs), which was characterized by decreased PN, maximum yield of fluorescence after dark adaptation (Fm), photochemical efficiency of PS2 (Fv/Fm) and quantum yield of PS2 (ΦPS2), and increased reduction state of QA (1-qP) and non-photochemical quenching (NPQ). Initial fluorescence (F0) showed a decrease after the first 2 h, and subsequently increased from the third hour exposure to HI. Furthermore, a greater increase in the ratio (Fi-F0)/(Fp-F0) which is an expression of the proportion of the QB non-reducing PS2 centres, whereas a remarked decrease in the slope of Fi to Fp which represents the rate of QA reduction was observed in leaves after HI exposure. Additionally, HI caused an increase in the pool size of the xanthophyll cycle pigments and sustained elevated contents of zeaxanthin (Z), antheraxanthin (A), and de-epoxidation state (DES) at the end of the irradiation period. During HI, decreased Fm, Fv/Fm, ΦPS2, NPQ, slope of Fi to Fp, V+A+Z, and DES, and increased F0, 1-qP, ratio (Fi-F0)/(Fp-F0), and V were observed in dithiothreitol (DTT)-fed leaves compared to control ones under the same conditions. Hence photoinhibition caused by HI in bayberry was probably attributed to inactivation of PS2 RCs, and photoprotection from photodamage were mainly related to the xanthophyll cycle-dependent heat dissipation in excess photons. and Y.-P. Guo ... [et al.].
Evergreen fir Abies mariesii growing at the tree line (near 2 500 m altitude) on Mt. Norikura (36°61'N, 137°33'E, 3 026 m altitude) in Central Japan is exposed to harsh winter stresses. To protect against these stresses, the deep-oxidation state of the xanthophyll cycle pigments increased, because the needles contained large amounts of zeaxanthin, which resulted in an increase of non-radiative thermal dissipation from the antenna system. Not only the antenna system but also the inactivated photosystem (PS) 2 reaction centre (RC) might contribute to the heat dissipation of absorbed excess photon energy. In addition, a decrease in the PS2 activity during winter was derived from the degradation of the PS2 RCs. Thus the needles acclimated to the strong sunlight during the harsh winter. Under such conditions, only the abaxial side of A. mariesii needles occasionally changed colour from green to reddish-brown in early spring. Since this needle damage was only observed in shoots that protruded from the snow surface, this phenomenon might be caused by the interaction between the strong sunlight reflected from the snow surface and the long period of sub-zero temperatures. We also examined how the photoprotective functions of A. mariesii growing at the tree line of a temperate zone mitigate the interactive stresses of high photon flux density and sub-zero temperature in harsh winter. and J.-Y. Yamazaki ... [et al.].