Salicylic acid (SA) is a common, plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. Our experiment was therefore conducted to test whether the application of SA at various concentrations (0, 0.10, 0.50, and 1.00 mM) as a foliar spray would protect citrus seedlings (Valencia orange/Bakraii) subjected to salt stress (0, 25, 50, and 75 mM NaCl). Growth parameters, leaf chlorophyll (Chl) content, relative water content (RWC), maximal quantum yield of PSII photochemistry (Fv/Fm), and gas-exchange variables were negatively affected by salinity. In addition, leaf electrolyte leakage (EL) and proline content increased by salinity treatments. Application of SA increased net photosynthetic rate and proline content in salt stressed plants and may have contributed to the enhanced growth parameters. SA treated plants had greater Chl content and RWC compared with untreated plants when exposed to salt stress. Fv/Fm ratio and stomatal conductance were also significantly higher in SA treated plants under saline stress conditions. SA application reduced EL compared to untreated plants, indicating possible protection of integrity of the cellular membrane. It appeared that the best ameliorative remedies of SA were obtained when Valencia orange/Bakraii seedlings were sprayed by 0.50 and 1.00 mM solutions. Overall, the adverse effects of salt stress could be alleviated by exogenous application of SA., D. Khoshbakht, M. R. Asgharei., and Obsahuje seznam literatury