Field-grown plants of spring barley (Hordeum vulgare L. cv. Akcent) in the growth phase 30 DC (beginning of stem extension) were exposed to a one-shot application of a commercial product containing cyanazine (Bladex 50 SC) in two doses, C30 and C60 (30 and 60 mg m-2). The reaction of the plant photosynthetic system was followed non-destructively using chlorophyll fluorescence induction (the O-J-I-P transient) within three weeks after the application in the fifth developed leaf and three further gradually appearing leaves. An immediate response of plants to the application of cyanazine and a regeneration of plants from cyanazine action were detected. The biological (plant dry mass) and crop yield production (the number and mass of grains in a spike) were analyzed in time of full ripeness. The crop yield was lowered by the herbicide effect to the same level for the two doses used. and M. Matoušková, J. Nauš, M. Flašarová.
Plants of spring wheat (Triticum aestivum L. cv. Saxana) were grown during the autumn. Over the growth phase of three leaves (37 d after sowing), some of the plants were shaded and the plants were grown at 100 (control without shading), 70, and 40 % photosynthetically active radiation. Over 12 d, chlorophyll (Chl) and total protein (TP) contents, rate of CO2 assimilation (PN), maximal efficiency of photosystem 2 photochemistry (FV/FP), level of lipid peroxidation, and activities of antioxidative enzymes ascorbate peroxidase (APX) and glutathione reductase (GR) were followed in the 1st, 2nd, and 3rd leaves (counted according to their emergence). In un-shaded plants, the Chl and TP contents, PN, and FV/FP decreased during plant ageing. Further, lipid peroxidation increased, while the APX and GR activities related to the fresh mass (FM) decreased. The APX activity related to the TP content increased in the 3rd leaves. The plant shading accelerated senescence including the increase in lipid peroxidation especially in the 1st leaves and intensified the changes in APX and GR activities. We suggest that in the 2nd and 3rd leaves a degradation of APX was slowed down, which could reflect a tendency to maintain the antioxidant protection in chloroplasts of these leaves. and M. Špundová ... [et al.].