Two contrasting sea buckthorn (Hippophae rhamnoides L.) populations from the low (LA) and high (HA) altitudinal regions were employed to evaluate the plant physiological responses to solar UV-A radiation and near-ambient UV-B radiation (UV-B+A) under the sheltered frames with different solar ultraviolet radiation transmittance. LA-population was more responsive to solar UV-A. Some modification caused by UV-A only existed in LA-population, such as significant reduction of leaf size, relative water content, and chlorophyll (Chl) b content as well as δ13C elevation, coupled with larger increase of contents of total carotenoids (Cars). This higher responsiveness might be an effective pre-acclimation strategy adapting for concomitant solar UV-B stress. Near-ambient UV-B+A radiation caused significant reduction of leaf size and Chl content as well as slight down-regulation of photosystem 2 activity that paralleled with higher heat dissipation, while photosynthetic rate was modestly but significantly increased. The higher photosynthesis under near-ambient UV-B+A radiation could be related to pronounced increase of leaf thickness and effective physiological modification, like the increase of leaf protective pigments (Cars and UV-absorbing compound), constant high photochemical capacity, and improved water economy. and Y. Q. Yang, Y. Yao.