In a field rain-fed trial with 15 cassava cultivars, leaf gas exchanges and carbon isotope discrimination (Δ) of the same leaves were determined to evaluate genotypic and within-canopy variations in these parameters. From 3 to 7 months after planting leaf gas exchange was measured on attached leaves from upper, middle, and lower canopy layers. All gas exchange parameters varied significantly among cultivars as well as canopy layers. Net photosynthetic rate (PN) decreased from top canopy to bottom indicating both shade and leaf age effects. The same trend, but in reverse, was found with respect to Δ, with the highest values in low canopy level and the lowest in upper canopy. There were very significant correlations, with moderate and low values, among almost all these parameters, with PN negatively associated with intercellular CO2 concentration (Ci), ratio of C i to ambient CO2 concentration C i/C a, and Δ. Across all measured leaves, Δ correlated negatively with leaf water use efficiency (WUE = photosynthesis/stomatal conductance, gs) and with gs, but positively with Ci and Ci/Ca. The later parameters negatively correlated with leaf WUE. Across cultivars, both PN and correlated positively with storage root yield. These results are in agreement with trends predicted by the carbon isotope discrimination model. and M. A. El-Sharkawy, S. M. de Tafur.