Effíciency of the energy transformation for CO2 fixation (E), and kinetics of the initial 02-mediated electron transport of Spimlina platemis (Gom.) Geitl. and Chlorella vulgaris Beijerinck cells were measured after adaptation to various growth irradiances (7) by means of the delayed fluorescence (DF) induction curves. Maxima of the membrane potential expenses during induction period were observed at I half saturating oxygen evolution; they were shifted according to growth 1 remaining higher in Spirulina than in Chlorella. The alterations of absorbance and fluorescence spectra at 25 oC after adaptation to / demonstrated changes in composition of pigments of algae, created to compensate for the imbalance in radiation absorption between the two photosystems. For Spirulina cells, the value of E was higher after growing under low /, or under blue radiation absorbed mainly by photosystem (PS) 1 (400-500 nm) with excitation by yellow (570 nm) radiation. For Chlorella cells, it was also higher after growing under low I. Under such conditions the half-rise time for DP-phase of DF induction curve decreased, which reflected an acceleration of kinetics of the initial electron transport between photosystems. An opposite situation was observed with Spirulina cells grown under high I or yellow radiation, and Chlorella cells from high I. Enhancement of effective PS2/PS1 ratio associated with decrease of reaction centre (RC) 2/RCl stoichiometry may be a cause of the increase of E and high membrane energization under saturating I in algae adapted to low 1.
Pigment-protein complexes enriched in photosystem 1 (PS1) and, for comparison, enriched in photosystem 2 (PS2) were isolated from the cyanobacterium Synechococcus elongatus Nag. f. thermalis Geitl. They were immobilized and oriented in the polyvinyl alcohol (PVA) films, and studied by linear dichroism (LD), fluorescence polarization (FP), photoacoustic spectroscopy (PAS), and polarized photoacoustic spectroscopy (PAS|| and PAS⊥). The LD signal of β-carotene in the region with maximum at 500 nm was positive in the PS1 complex. The maximum value of fluorescence polarization (FP) in the measured photosynthetic pigment region was 1.25 and was similar to higher plant values. Carotenoids exhibited different efficiencies of thermal deactivation (max. at 500 nm) in PS1 and PS2. The thermal deactivation efficiency of carotenoids in comparison with that of chlorophyll (Chl) a at its red absorbance maximum was much higher in PS1 than in PS2 complexes. Cyanobacterial complexes did not contain Chl b, interpretation of the LD, PAS, and FP results is thus easier and can be compared with PS1 and PS2 values of higher plants, especially with Chl b-less mutant values. and G. E. Białek-Bylka ... [et al.].