Photosynthetic utilization of radiant energy was studied by chlorophyll (Chl) fluorescence and maximum photosynthetic O2 evolution (Pmax) in temperate lettuce (Lactuca sativa L.) grown under natural tropical fluctuating ambient temperatures but with their roots exposed to two different root-zone temperatures (RZTs): a constant 20 °C-RZT (RZT20) and a fluctuating ambient RZT (RZTa) from 23 to 40 °C. On a sunny day, irrespective of RZT, ΔF/Fm' [ratio of the variable to maximal fluorescence under irradiation (the maximal photosystem 2 quantum yield with "actinic light")] decreased and non-photochemical quenching (NPQ) increased parallel to the increase of photosynthetic photon flux density (PPFD). However, RZTa plants showed lower ΔF/Fm' and higher NPQ than RZT20 plants. The electron transport rate (ETR) was much higher in RZT20 plants than in RZTa plants especially during moderately sunny days. There were no significant diurnal changes in Pmax although these values of RZT20 plants were much higher than those of RZTa plants. On cloudy days, no significant diurnal changes in ΔF/Fm' and NPQ occurred, but ΔF/Fm' was higher and NPQ was lower in RZT20 plants than in RZTa plants. Diurnal changes in ETR were also observed in all plants while Pmax values throughout the whole cloudy days in both RZT20 and RZTa plants were constant. Again, RZT20 plants had much higher values of Pmax than RZTa plants. During RZT transfer period, all Chl fluorescence parameters measured at midday fluctuated with PPFD. Impact of RZT on these parameters was observed 2-3 d after RZT transfer. ETR and Pmax measured with saturating PPFD in the laboratory did not vary with the fluctuating PPFD in the greenhouse but the effects of RZT on these two parameters were observed 3-4 d after RZT transfer. Thus RZT affects photosynthetic utilization of photon energy in temperate lettuce grown under natural tropical condition. and J. He, S. K. Lee.
Effects of elevated root-zone (RZ) CO2 concentration (RZ [CO2]) and RZ temperature (RZT) on photosynthesis, productivity, nitrate (NO3-), total reduced nitrogen (TRN), total leaf soluble and Rubisco proteins were studied in aeroponically grown lettuce plants in a tropical greenhouse. Three weeks after transplanting, four different RZ [CO2] concentrations (ambient, 360 ppm, and elevated concentrations of 2,000; 10,000; and 50,000 ppm) were imposed on plants at 20°C-RZT or ambient(A)-RZT (24-38°C). Elevated RZ [CO2] resulted in significantly higher light-saturated net photosynthetic rate, but lower light-saturated stomatal conductance. Higher elevated RZ [CO2] also protected plants from both chronic and dynamic photoinhibition (measured by chlorophyll fluorescence Fv/Fm ratio) and reduced leaf water loss. Under each RZ [CO2], all these variables were significantly higher in 20°C-RZT plants than in A-RZT plants. All plants accumulated more biomass at elevated RZ [CO2] than at ambient RZ [CO2]. Greater increases of biomass in roots than in shoots were manifested by lower shoot/root ratios at elevated RZ [CO2]. Although the total biomass was higher at 20°C-RZT, the increase in biomass under elevated RZ [CO2] was greater at A-RZT. Shoot NO3- and TRN concentrations, total leaf soluble and Rubisco protein concentrations were higher in all elevated RZ [CO2] plants than in plants under ambient RZ [CO2] at both RZTs. Under each RZ [CO2], total leaf soluble and Rubisco protein concentrations were significantly higher at 20°C-RZT than at A-RZT. Our results demonstrated that increased P Nmax and productivity under elevated [CO2] was partially due to the alleviation of midday water loss, both dynamic and chronic photoinhibition as well as higher turnover of Calvin cycle with higher Rubisco proteins. and J. He, L. Qin, S. K. Lee.
The effect of root growth temperature on maximal photosynthetic CO2 assimilation (Pmax), carbohydrate content, 14C-photoassimilate partitioning, growth, and root morphology of lettuce was studied after transfer of the root system from cool root-zone temperature (C-RZT) of 20 °C to hot ambient-RZT (A-RZT) and vice versa. Four days after RZT transfer, Pmax and leaf total soluble sugar content were highest and lowest, respectively, in C-RZT and A-RZT plants. Pmax and total leaf soluble sugar content were much lower in plants transferred from C-to A-RZT (C→A-RZT) than in C-RZT plants. However, these two parameters were much higher in plants transferred from A-to C-RZT (A→C-RZT) than in A-RZT plants. A-RZT and C→A-RZT plants had higher root total soluble sugar content than A→C-RZT and C-RZT plants. Leaf total insoluble sugar content was similar in leaves of all plants while it was the highest in the roots of C-RZT plants. Developing leaves of C-RZT plants had higher 14C-photoassimilate content than A-RZT plants. The A→C-RZT plants also had higher 14C-photoassimilate content in their developing leaves than A-RZT plants. However, more 14C-photoassimilates were translocated to the roots of A-RZT and C→A-RZT plants, but they were mainly used for root thickening than for its elongation. Increases in leaf area, shoot and root fresh mass were slower in C→A-RZT than in C-RZT plants. Conversely, A→C-RZT plants had higher increases in these parameters than A-RZT plants. Lower root/shoot ratio (R/S) in C-RZT than in A-RZT plants confirmed that more photoassimilates were channelled to the shoots than to the roots of C-RZT plants. Roots of C-RZT plants had greater total length with a greater number of tips and surface area, and smaller average diameter as compared to A-RZT plants. In C→A-RZT plants, there was root thickening but the increases in its length, tip number and surface area decreased. The reverse was observed for A→C-RZT plants. These results further supported the idea that newly fixed photoassimilates contributed more to root thickening than to root elongation in A-RZT and C→A-RZT plants. and J. He, L. P. Tan, S. K. Lee.