Halomicronema hongdechloris is a chlorophyll (Chl) f-producing cyanobacterium. Chl f biosynthesis is induced under far-red light, extending its photosynthetically active radiation range to 760 nm. In this study, PSI complexes were isolated and purified from H. hongdechloris, grown under white light (WL) and far-red light (FR), by a combination of density gradient ultracentrifugation and chromatographic separation. WL-PSI showed similar pigment composition as that of Synechocystis 6803, using Chl a in the reaction center. Both Chl a and f were detected in the FR-PSI, although Chl f was a minor component (~8% of total Chl). The
FR-PSI showed a maximal fluorescence emission peak of 750 nm at 77 K, which is red-shifted ~20 nm compared to the 730 nm recorded from the WL-PSI. The absorption peaks of P700 for WLPSI and FR-PSI were 699 nm and 702 nm, respectively. The function of Chl f in FR-PSI is discussed., Y. Li, N. Vella, M. Chen., and Obsahuje bibliografické odkazy
Cyanobacterial NDH-1 interacts with PSI to form NDH-1-PSI supercomplex. CpcG2, a linker protein for the PSI-specific peripheral antenna CpcG2-phycobilisome, is essential for stabilization of the supercomplex. Green light (GL) increased the expression of CpcG2 but had little effect, if any, on the expression of NDH-1 and PSI, when compared to the abundance of these components under red light (RL). The increased expression of CpcG2 intensified the band of NDH-1-PSI supercomplex after blue-native gel electrophoresis of the thylakoid membrane, possibly by stabilizing the supercomplex. The activity of NDH-1-dependent cyclic electron transport around PSI increased when cells grown under RL were transferred to a low intensity GL but was suppressed when cells were grown under high intensities of GL. The functionality of PSI showed the same trend. We thus conclude that GL increases the expression of CpcG2, thereby increasing the abundance of the NDH-1-PSI supercomplex and its activity at low GL but not at higher GL., F. Gao, T. Ogawa, W. Ma., and Obsahuje bibliografické odkazy
We report here the screening of sixteen cyanobacterial and three green algal strains from Thailand for their potential biohydrogen production. Five filamentous cyanobacterial species, namely Calothrix elenkinii, Fischerella muscicola, Nostoc calcicola, Scytonema bohneri, and Tolypothrix distorta, all possessing nitrogenase activity, showed potentially high biohydrogen production. These five strains showed higher hydrogen production in the absence than in the presence of nitrogen. In particular, F. muscicola had a 17-fold increased hydrogen production under combined nitrogen and sulfur deprived conditions. Among various sugars as a carbon source, glucose at 0.1% (w/v) gave the maximal hydrogen production of 10.9 μmol(H2) mg-1(Chl) h-1 in T. distorta grown in BG11 medium without nitrate. Increasing light intensity up to 250 μmol(photon) m-2 s-1 increased hydrogen production in F. muscicola and T. distorta. Overall results indicate that both F. muscicola and T. distorta have a high potential for hydrogen production amenable for further improvement by using molecular genetics technique., P. Yodsang, W. Raksajit, E.-M. Aro, P. Mäenpää, A. Incharoensakdi., and Obsahuje bibliografické odkazy
Fotosyntéza představuje fundamentální biochemický proces, na němž závisí udržení naprosté většiny forem života na Zemi; její výzkum patří v našich zemích mezi tradiční již od dob bývalého Československa. Týmy pracovníků třeboňského Centra Algatech Mikrobiologického ústavu AV ČR pod vedením prof. Josef Komendy a dr. Romana Sobotky se dlouhodobě věnují oboru, který lze označit jako molekulární biologie fotosyntézy. and Josef Komenda, Roman Sobotka.