The paper evaluates the results of a 6-year-monitoring of the eco-hydrological influence of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus silvatica L.) forest stands on the hydro-physical properties of snow cover. The experiment was carried out in the artificially regenerated 20-25-year-old forest stands approaching the pole timber stage in the middle mountain region of the Polana Mts. - Biosphere reserve situated at about 600 m a.s.l. during the period of maximum snow supply in winters of years 2004 -2009. Forest canopy plays a decisive role at both the snow cover duration and spring snow melting and runoff generation. A spruce stand is the poorest of snow at the beginning of winter. High interception of spruce canopy hampers the throughfall of snow to soil. During the same period, the soil surface of a beech stand accumulates greater amount of snow. However, a spruce stand accumulates snow by creating snow heaps during the periods of maximum snow cumulation and stand´s microclimate slows down snow melting. These processes are in detail discussed in the paper. The forest stands of the whole biosphere reserve slow down to a significant extent both the snow cover melting and the spring runoff of the whole watershed. and Práca hodnotí výsledky 6-ročného terénneho monitoringu eko-hydrologického vplyvu porastov smreka obyčajného (Picea abies (L.) Karst.) a buka lesného (Fagus silvatica L.) na hydrofyzikálne vlastnosti snehovej pokrývky. Experiment prebiehal v rokoch 2004 - 2009 počas obdobia s maximálnou zásobou snehu na výskumnej ploche v stredohorskej oblasti (nadmorská výška okolo 600 m n.m.) v Biosférickej rezervácii Poľana v 20- až 25- ročnom umelo obnovenom poraste vo fáze žrďoviny. Koruny porastu zohrávajú rozhodujúcu úlohu, ako pri topení snehu, tak aj pri formování odtoku. Začiatkom zimnej sezóny sa v smrekovom poraste nachádza menej snehu. Vysoká intercepcia smrekov bráni v prenikaní snehu k pôde. V rovnakom období sa na pôde v bukovom poraste akumuluje vačšie množstvo snehu. Smrekový porast však vďaka akumulovaniu snehu pri tvorbe snehových kôp počas obdobia s maximálnou kumuláciou snehu ako aj vďaka porastovej mikroklíme spomaľuje topenie snehu. V článku podrobne opisujeme tieto procesy. Porasty celej biosférickej rezervácie sa významne podieľajú na spomaľovaní ako topenia sa snehu, tak aj jarného odtoku z celého povodia.
Snow production results in high volume of snow that is remaining on the low-elevation ski pistes after snowmelt of natural snow on the off-piste sites. The aim of this study was to identify snow/ice depth, snow density, and snow water equivalent of remaining ski piste snowpack to calculate and to compare snow ablation water volume with potential infiltration on the ski piste area at South-Central Slovak ski center Košútka (Inner Western Carpathians; temperate zone). Snow ablation water volume was calculated from manual snow depth and density measurements, which were performed at the end of five winter seasons 2010–2011 to 2015–2016, except for season 2013–2014. The laser diffraction analyzes were carried out to identify soil grain size and subsequently the hydraulic conductivity of soil to calculate the infiltration. The average rate of water movement through soil was seven times as high as five seasons’ average ablation rate of ski piste snowpack; nevertheless, the ski piste area was potentially able to infiltrate only 47% of snow ablation water volume on average. Limitation for infiltration was frozen soil and ice layers below the ski piste snowpack and low snow-free area at the beginning of the studied ablation period.
The aim of the investigation was assessment of spatial variability of the characteristics of snowpack, including the snow water equivalent (SWE) as the main hydrological characteristic of a seasonal snow cover. The study was performed in Khibiny Mountains (Russia), where snow density and snow cover stratigraphy were documented with the help of the SnowMicropen measurements, allowing to determine the exact position of the snow layers’ boundaries with accuracy of 0.1 cm. The study site was located at the geomorphologically and topographically uniform area with uniform vegetation cover. The measurement was conducted at maximum seasonal SWE on 27 March 2016. Twenty vertical profiles were measured along the 10 m long transect. Vertical resolution depended on the thickness of individual layers and was not less than 10 cm. The spatial variation of the measured snowpack characteristics was substantial even within such a homogeneous landscape. Bulk snow density variability was similar to the variability in snow height. The total variation of the snowpack SWE values along the transect was about 20%, which is more than the variability in snow height or snow density, and should be taken into account in analysis of the results of normally performed in operational hydrology snow course SWE estimations by snow tubes.