Stomatal and mesophyll limitations to photosynthesis in one evergreen and one deciduous Mediterranean oak species
- Title:
- Stomatal and mesophyll limitations to photosynthesis in one evergreen and one deciduous Mediterranean oak species
- Creator:
- Mediavilla, S., Santiago, H., and Escudero, A.
- Identifier:
- https://cdk.lib.cas.cz/client/handle/uuid:025cdc3f-753c-4b3f-931d-bec5a2fb75a0
uuid:025cdc3f-753c-4b3f-931d-bec5a2fb75a0
issn:0300-3604
doi:10.1023/A:1024399919107 - Subject:
- field gas exchange, leaf mass per unit area, leaf nitrogen content, leaf water potential, photosynthetic capacity, Quercus faginea, Quercus rotundifolia, and vapour pressure deficit
- Type:
- model:article and TEXT
- Format:
- bez média and svazek
- Description:
- In the evergreen Quercus rotundifolia and the co-existing deciduous Q. faginea we studied the diurnal variations in photosynthetic capacity (Pmax), measured as the rate of O2 evolution at photon and CO2 saturation, and in the rate of net CO2 assimilation (PN) in the field during the period of maximum photosynthetic activity. Our aim was to check the contribution of stomatal and non-stomatal limitations to the diurnal variation in photosynthesis, and to study the differences between both species. Q. faginea leaves displayed lower mass per unit area and higher nitrogen content than Q. rotundifolia leaves. The maximum stomatal conductance and PN in the field were higher in Q. faginea than in Q rotundifolia. Also Pmax of Q. faginea was higher than that of Q. rotundifolia. Both species attained in the field a high percentage of the Pmax (around 82 % for Q. faginea and 73 % for Q. rotundifolia). This indicates reduced stomatal limitation of photosynthesis under favourable conditions, especially in Q. faginea. PN underwent a sharp decrease towards mid-day in association with increase in the atmospheric vapour pressure deficit and decrease in the leaf water potential. Pmax was also reduced during mid-day. This demonstrated the contribution of mesophyll limitations to the PN in the two species under stress. The mesophyll limitation of photosynthesis seemed to be similar for both species, independently from the differences in leaf traits between them. and S. Mediavilla, H. Santiago, A. Escudero.
- Language:
- Multiple languages
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/
policy:public - Coverage:
- 553-559
- Source:
- Photosynthetica | 2002 Volume:40 | Number:4
- Harvested from:
- CDK
- Metadata only:
- false
The item or associated files might be "in copyright"; review the provided rights metadata:
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- policy:public