Effect of nitrogen application and elevated CO2 on photosynthetic gas exchange and electron transport in wheat leaves
- Title:
- Effect of nitrogen application and elevated CO2 on photosynthetic gas exchange and electron transport in wheat leaves
- Creator:
- Zhang, X. C., Yu, X. F., and Ma, Y. F.
- Identifier:
- https://cdk.lib.cas.cz/client/handle/uuid:bb2c2650-440b-413e-994c-ccd7ead7f763
uuid:bb2c2650-440b-413e-994c-ccd7ead7f763
issn:0300-3604
doi:10.1007/s11099-013-0059-5 - Subject:
- fotosyntéza, photosynthesis, CO2 concentration, electron transport rate and partitioning, nitrogen availability, 2, and 581
- Type:
- model:article and TEXT
- Format:
- bez média and svazek
- Description:
- Nitrogen (N) availability is a critical factor affecting photosynthetic acclimation of C3 plants under elevated atmospheric CO2 concentration ([CO2]e). However, current understanding of N effects on photosynthetic electron transport rate and partitioning, as well as its impact on photosynthesis under [CO2]e, is inadequate. Using controlled environment open-top chambers, wheat (Triticum aestivum L.) was grown at two N levels (0 and 200 mg(N) kg-1 soil) and two atmospheric CO2 concentrations of 400 ([CO2]a) and 760 μmol mol-1([CO2]e) during 2009 and 2010. Under [CO2]e high N availability increased stomatal conductance and transpiration rate, reduced limitations on the activity of triose phosphate isomerase, a Calvin cycle enzyme, and increased the rate of net photosynthesis (PN). Considering photosynthetic electron transport rate and partitioning aspects, we suggest that greater N availability increased PN under [CO2]e due to four following reasons: (1) higher N availability enhanced foliar N and chlorophyll concentrations, and the actual photochemical efficiency of photosystem (PS) II reaction centers under irradiance increased, (2) increase of total electron transport rate and proportion of open PSII reaction centers, (3) enhancement of the electron transport rate of the photochemical and carboxylation processes, and (4) reduced limitations of the Calvin cycle enzymes on the photosynthetic electron transport rate. Consequently, sufficient N improved light energy utilization in wheat flag leaves under [CO2]e, thus benefiting to photosynthetic assimilation. and X. C. Zhang, X. F. Yu, Y. F. Ma.
- Language:
- Multiple languages
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/
policy:public - Coverage:
- 593-602
- Source:
- Photosynthetica | 2013 Volume:51 | Number:4
- Harvested from:
- CDK
- Metadata only:
- false
The item or associated files might be "in copyright"; review the provided rights metadata:
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- policy:public