Effects of sodium chloride stress on gas exchange, chlorophyll content and nutrient concentrations of nine citrus rootstocks
- Title:
- Effects of sodium chloride stress on gas exchange, chlorophyll content and nutrient concentrations of nine citrus rootstocks
- Creator:
- Khoshbakht, D., Ramin, A. A., and Baninasab, B.
- Identifier:
- https://cdk.lib.cas.cz/client/handle/uuid:e6fd3d1e-4abd-447b-a37f-faa6aa6e3530
uuid:e6fd3d1e-4abd-447b-a37f-faa6aa6e3530
issn:0300-3604
doi:10.1007/s11099-015-0098-1 - Subject:
- fotosyntéza, photosynthesis, Írán, Iran, growth analysis, mineral nutrition, net photosynthetic rate, salinity, 2, and 581
- Type:
- model:article and TEXT
- Format:
- print, bez média, and svazek
- Description:
- a1_We investigated the influence of salinity (0, 25, 50, or 75 mM NaCl) on gas exchange and physiological characteristics of nine citrus rootstocks (Cleopatra mandarin, Carrizo citrange, Macrophylla, Iranian mandarin Bakraii, Rangpur lime, Rough lemon, Sour orange, Swingle citrumelo, and Trifoliate orange) in a greenhouse experiment. Total plant dry mass, total chlorophyll (Chl) content, and gas-exchange variables, such as net photosynthetic rate (PN), stomatal conductance (g s), intercellular CO2 concentration, were negatively affected by salinity. In addition, ion concentrations of Cl- and Na+ increased by salinity treatments. Salinity also increased Mg2+ content in roots and reduced Ca2+ and Mg2+ concentrations in leaves. The K+ concentration in leaves was enhanced at low salinity (25 mM NaCl), whereas it decreased with increasing salinity stress. Salinity caused a decline in K+ contents in roots., a2_The rootstocks showed major differences in the extent of Cl- and Na+ accumulation in leaves and in their ability to maintain the internal concentrations of essential nutrients in response to different salinity. Therefore, in addition to inhibitory effects of high concentrations of Cl- and Na+, an imbalance of essential nutrients may also contribute to the reduction in gas exchange under saline conditions. Higher tolerance of rootstocks to salinity could be associated with the reduction of Cl- and Na+ uptake and transport to leaves, ability to keep higher Chl, gs, PN, and better maintenance of nutrient uptake even under high salinity. We found that Sour orange and Cleopatra mandarin were the rootstocks most tolerant to salinity of all nine studied. In addition, Trifoliate orange, Carrizo citrange, and Swingle citrumelo were the rootstocks most sensitive to salt stress followed by the Rough lemon and Macrophylla that showed a low-to-moderate tolerance, and Rangpur lime and Bakraii, with a moderate-to-high tolerance to high salinity., D. Khoshbakht, A.A. Ramin, B. Baninasab., and Obsahuje bibliografii
- Language:
- Multiple languages
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/
policy:public - Coverage:
- 241-249
- Source:
- Photosynthetica | 2015 Volume:53 | Number:2
- Harvested from:
- CDK
- Metadata only:
- false
The item or associated files might be "in copyright"; review the provided rights metadata:
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- policy:public