In this paper we discuss the exact null controllability of linear as well as nonlinear Black-Scholes equation when both the stock volatility and risk-free interest rate influence the stock price but they are not known with certainty while the control is distributed over a subdomain. The proof of the linear problem relies on a Carleman estimate and observability inequality for its own dual problem and that of the nonlinear one relies on the infinite dimensional Kakutani fixed point theorem with L2 topology.