Let Ln = K[x1±1,..., xn±1] be a Laurent polynomial algebra over a field K of characteristic zero, Wn:= DerK(Ln) the Lie algebra of K-derivations of the algebra Ln, the so-called Witt Lie algebra, and let Vir be the Virasoro Lie algebra which is a 1-dimensional central extension of the Witt Lie algebra. The Lie algebras Wn and Vir are infinite dimen- sional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: AutLie(Vir) \simeq AutLie(W1) \simeq {±1} \simeq K*, and give a short proof that AutLie(Wn) \simeq AutK-alg(Ln) \simeq GLn(Z) \ltimes K*n., Vladimir V. Bavula., and Obsahuje seznam literatury