Let H be a finite abelian group of odd order, D be its generalized dihedral group, i.e., the semidirect product of C2 acting on H by inverting elements, where C2 is the cyclic group of order two. Let Ω (D) be the Burnside ring of D, Δ(D) be the augmentation ideal of Ω (D). Denote by Δn(D) and Qn(D) the nth power of Δ(D) and the nth consecutive quotient group Δn(D)/Δn+1(D), respectively. This paper provides an explicit Z-basis for Δn(D) and determines the isomorphism class of Qn(D) for each positive integer n., Shan Chang., and Obsahuje seznam literatury