Maize (Zea mays) seedlings were exposed for 6 h to strong irradiance (1 000 μmol m-1 s-1 of PPFD) at 5, 12, 17, or 25 °C, followed by an exposure to the darkness for 6 h at 22 °C. Leaf chlorophyll fluorescence, net photosynthetic rate (PN), and the amount of superoxide radicals (O2-⋅) in relation to chilling-induced photoinhibition were investigated. During the photophase, a good correlation (r=-0.879) was observed between ΦPS2 (relative quantum efficiency of PS2 electron transport) and the amount of O2-⋅. Treatment with exogenous O2-⋅ reduced the PN and ΦPS2 as the chilling stress did, that was inhibited by specific scavenger of O2-⋅. Hence chilling-induced photoinhibition might be due to the production of O2-⋅. In contrast, in the dark period, PN and ΦPS2 of the seedlings treated with the exogenous O2-⋅ were enhanced, but they were inhibited by the specific scavenger of O2-⋅, showing the photoprotective role of O2-⋅ in the recovery phase. Furthermore, in terms of the effect of exogenous O2-⋅ on the xanthophyll cycle, the O2-⋅ production suggested a promotion effect for the de-epoxidation of violaxanthin during the photophase, the epoxidation of zeaxanthin at the dark stage, and the increase of the xanthophyll pool both in the photophase and dark phase, resulting in an enhancement of the ability of non-photochemical quenching to avoid or alleviate the damage to photosynthetic apparatus. and D. Ke, G. Sun, Y. Jiang.
A versatile and inexpensive systém with a hand scanner was developed and evaluated for measuring leaf area. A BASIC programme was created for processing the image fíles and calculating the area of scanned objects. The accuracy was better than 1 % of the reference area and it fell only when the area/perimeter ratio was less than 0.3 or when the measured object size was smaller than 0.1 cm^.
Net photosynthetic rate (PN) was high in genotypes with 'C' genome both in the nucleus and cytoplasm. This may be attributed to the co-ordinated manner of acting of both genome sources. Leaf mass per area (LMA) and chlorophyll content increased with leaf nitrogen (N) content but did not show any correlation with PN. The factors which affected PN had the same effect on photosynthetic nitrogen use efficiency (pNUE). Thus, differential allocation of N to the various components influences plant pNUE which is not significantly affected by genome constitution. and A. Anand, K. Suresh, T. V. R. Nair.
Host-parasite relationships between the Daubenton's bat, Myotis daubentonii Kuhl, 1817 (Chiroptera: Vespertilionidae), and its haematophagous ectoparasite, the mite Spinturnix andegavinus Kolenati, 1857 (Acari: Spinturnicidae), were subjected to analyses based on data gathered during a six-year study (1999-2004) within a single study area in South Bohemia, Czech Republic. Seven hundred and fifty-one Daubenton's bats were examined by screening wing membranes with an intensive light source, resulting in 4,690 recorded mites. Sex, age, weight and reproductive state were evaluated for each bat. A body condition index was calculated as a ratio of weight to forearm length. The seasonal course of mite infestation displayed distinct dynamics with the peak during the lactation and post-lactation periods coinciding with occurrence of the most numerous colonies of Daubenton's bats in the study area. Infestation rates differed between the two sexes, being higher in adult females than adult males. Juvenile bats of both sexes (with no differences between males and females) were the most infested group of all. Pregnant females had a significantly higher parasite load than non-pregnant ones, while no differences in infestation rates were found between lactating and non-lactating females. The analyses of the relationship between parasite load and body condition of bats revealed no common trends for all sex- and age-related groups. Two possible explanations are suggested and discussed: (1) There is no true relationship between the two tested variables and, thus, the significant results were attained due to a random statistical effect. (2) Different underlying causal mechanisms may exist that influence parasite load and, especially, body condition, with respect to the particular sex and age category of bats. The seasonal roosting dynamics of the Daubenton's bat are suggested to be the result not only of changing energetic demands of resident population members, but also of coevolutionary strategies within host-parasite relationships.
The effect of heat stress (35 to 50 °C) on photosynthesis was investigated in heat tolerant (N 22) and heat sensitive (IR 8) cultivars of rice {Oryza sativa L.). The net photosynthetic rate showed greater thermal stability in N 22 than in IR 8. The relative dechne of the rate of whole chain electron transport and photosystem 2 (PS2) activity was more pronounced in IR 8 than N 22. In both cultivars photosystem (PSI) activity was stimulated by thermal treatment. Chlorophyll (Chl) a fluorescence transient arising ffom PS2 showed inhibition in both cultivars at 45 and 50 °C. Maximum fluorescence decreased more in IR 8 than in N 22 by high temperature treatment.