Let L1 = −Δ + V be a Schrödinger operator and let L2 = (−Δ)2 + V2 be a Schrödinger type operator on \mathbb{R}^{n}\left ( n\geqslant 5 \right ) where V≠ 0 is a nonnegative potential belonging to certain reverse Hölder class Bs for s\geqslant n/2. The Hardy type space H_{L2}^{1} is defined in terms of the maximal function with respect to the semigroup \left\{ {{e^{ - t{L_2}}}} \right\} and it is identical to the Hardy space H_{L2}^{1} established by Dziubański and Zienkiewicz. In this article, we prove the Lp-boundedness of the commutator Rb = bRf - R(bf) generated by the Riesz transform R = {\nabla ^2}L_2^{ - 1/2} , where b \in BM{O_\theta }(\varrho ) , which is larger than the space BMO\left (\mathbb{R}^{n} \right ). Moreover, we prove that Rb is bounded from the Hardy space H_{L2}^{1} into weak L_{weak}^1 (\mathbb{R}^n )., Yu Liu, Jing Zhang, Jie-Lai Sheng, Li-Juan Wang., and Obsahuje seznam literatury