Ultrazvuk, představující akustické kmity prostředí o specifických frekvencích, je jedním z mnoha fyzikálních činitelů, které se mohou uplatnit při interakcích s biologickými objekty. Posouzení účinků ultrazvukového pole na biologické systémy je možné hodnotit dle různých klasifikačních kritérií, např. dle povahy interakčního procesu, dle interagujících biologických struktur či výsledného "produktu". Při snaze o vytvoření univerzálního modelu interakce ultrazvuku a biologických struktur hraje velkou roli variabilita biologického materiálu a jeho různorodá odezva na aplikované ultrazvukové pole, což situaci velmi ztěžuje. Přesto nese ultrazvukové pole potenciál vysoké využitelnosti v oblasti medicíny a přírodních věd., Ultrasound, representing the acoustic vibrations of medium with specific frequencies is one of many physical factors that can interact with biological objects. Assessment of the effects of ultrasonic field on biological systems can be evaluated according to different classification criteria, such as the nature of the interaction process, by the character of interacting biological structures or by the final process "product". In an effort to create a universal model of interaction of ultrasound and biological structures the variability of biological materials and its changeable response to the applied ultrasonic field plays an important role, which makes this process very difficult. Yet, after all, ultrasonic field has a high application potential in the field of medicine and science., Vladan Bernard, Vojtěch Mornstein, Jiřína Škorpíková, Naděžda Vaškovicová., and Obsahuje bibliografii
Large two-ribbon flares are frequently accompanied by a system of (post)-flare loops, cooler structures being visible in several optical and UV lines. We investigate tlie non-LTE formation of hydrogen lines in stationary loop structures, taking into account the influence of macroscopic velocity flows along the loop. We demonstrate some diagnostically important effects on hydrogen Hα line and identify them using narrow-band Hα filtergrams. This diagnostics provides us with a reasonable description of physical conditions prevailing in the cool flare loops. However, we finally stress the importance of even more complex (and difficult)
radiation-hydrodynamical approach.
Subepidermal glands of the body of Troglocaridicola sp. (from the cavemicolous shrimp Troglocaris sp. in eastern Italy) were observed by transmission electron microscopy. The reservoir and duct of the glands arc lined with longitudinal microlubulcs. Membrane-bound granules inside the gland show a distinctive pattern: they contain fibres, 18 nm in diameter, regularly arranged in bundles with a 5 nm space between libres. From a survey of the available literature on glands of Platyhelminthes, it is concluded that this structure is known only in this species. Glands with regularly arranged 18 nm fibres, if characteristic for the Scutariellidae, could be considered an autapomorphy of this family, distinguishing it from other members of the Temnocephalida.