Experimental control of quantum systems has been pursued widely since the invention of quantum mechanics. In the first part of the 20th century, atomic physics helped provide a test bed for quantum mechanics through studies of atoms‘ internal energy differences and their interaction with radiation. The advent of spectrally pure, tunable radiation sources such as microwave oscillators and lasers dramatically improved these studies by enabling the coherent control of atoms‘ internal states to deterministically prepare superposition states, as, for example, in the Ramsey method. More recently this control has been extended to the external (motional) states of atoms. Laser cooling and other refrigeration techniques have provide the initial states for a number of interesting studies, such as Bose-Einstein condensation. Similarly, control of the quantum states of artificial atoms in the context of condensed-matter systems is achieved in many laboratories throughout the world. To give proper recognition to all of these works would be a daunting task; therefore, I will restrict these notes to experiments on quantum control of internal and external states of trapped atomic ions., David J. Wineland ; přeložil Karel Rohlena., and Obsahuje bibliografii
Characterization of different component processes of photosynthesis is useful to understand the growth status of plants and to discover possible unintended effects of genetic modification on photosynthesis in transgenic plants. We focused on the changes in photosynthetic gas-exchange properties, reflectance spectra, and plant growth traits among groups of different transgenic barley T1 (TolT1) and its isogenic controls (TolNT1), TolT1, and group of its own transgenic progenies T2 (TolT2), TolNT1 and its wild type (WT), respectively. Gas-exchange measurements showed that only the net photosynthetic rate (P N) and the light-use efficiency (LUE) differed significantly between TolT1 and TolT2 with no obvious changes of other characteristics. Reflectance measurements indicated that the reflectance ratio was sensitive to identify the differences between two barley groups. Differences in reflectance expressed on an index basis depended on barley groups. The relationship between LUE and the photochemical reflectance index (PRI) at a leaf level among different barley groups of WT, TolNT1, TolT1 and TolT2 did not changed obviously. The differences in the total leaf area per plant (LA) between WT and TolNT1 as well as between TolT1 and TolT2 were significant. This study finally provided a plausible complex explanation for the unintended effects of genetic transformation on photosynthesis-related properties in barley at different levels. Furthermore, it was concluded that the photosynthesis-related properties of transgenic plants based on gas exchange, leaf reflectance, and plant growth measurements responded to the same environment in a more different way between two subsequent generations than to the processes of the gene insertion by Agrobacterium and associated tissue culture., C. X. Sun ... [et al. ]., and Obsahuje bibliografii