In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral R b a f dg exists if f ∈ BVϕ[a, b], g ∈ BVψ[a, b] and ∑∞ n=1 ϕ −1 (1/n)ψ −1 (1/n) < ∞. In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young.