Arbuscular mycorrhizal fungi (AMF) form symbioses with many plants. Black locust (Robinia pseudoacacia L.) is an important energy tree species that can associate with AMF. We investigated the effects of AMF (Rhizophagus irregularis and Glomus versiforme) on the growth, gas exchange, chlorophyll (Chl) fluorescence, carbon content, and calorific value of black locust seedlings in the greenhouse. The total biomass of the arbuscular mycorrhizal (AM) seedlings was 4 times greater than that of the nonmycorrhizal (NM) seedlings. AMF greatly promoted the photosynthesis of black locust seedlings. AM seedlings had a significantly greater leaf area, higher carboxylation efficiency, Chl content, and net photosynthetic rate (PN) than NM seedlings. AMF also significantly increased the effective photochemical efficiency of PSII and significantly enhanced the carbon content and calorific value of black locust seedlings. Seedlings inoculated with G. versiforme had the largest leaf area and highest biomass, Chl content, PN, and calorific value., X. Q. Zhu, C. Y. Wang, H. Chen, M. Tang., and Obsahuje bibliografii
Two clones of Hevea brasiliensis (RRII 105 and PB 235) were grown for one year in two distinct agroclimatic locations (warmer and colder, W and C) in peninsular India. We simultaneously measured gas exchange and chlorophyll (Chl) fluorescence on fully mature intact leaves at different photosynthetic photon flux densities (PPFDs) and ambient CO2 concentrations (Ca) and at constant ambient O2 concentration (21 %). Net photosynthetic rate (PN), apparent quantum yield for CO2 assimilation (Φc), in vivo carboxylation efficiency (CE), and photosystem 2 quantum yield (ΦPS2) were low in plants grown in C climate and these reductions were more predominant in RRII 105 than in PB 235 which was also reflected in their growth. We estimated in these clones the partitioning of photosynthetic electrons between CO2 reduction (JA) and processes other than CO2 reduction (J*) at low and high PPFDs and Ca. At high Ca (700 µmol mol-1) most of the photosynthetic electrons were used for CO2 assimilation and negligible amount went for other processes when PPFD was low (200-300 µmol m-2 s-1) both in the C and W climates. But at high PPFD (900-1 100 µmol m-2 s-1), J* was appreciably high even at a high Ca. Hence at normal ambient Ca and high irradiance, electrons can be generated in the photosynthetic apparatus far in excess of what can be safely utilised for photosynthetic CO2 reduction. However, at high Ca there was increased diversion of electrons to photosynthetic CO2 reduction which resulted in improved photosynthetic parameters even in plants grown in C climate. and B. Alam, D. B. Nair, J. Jacob.
The concept of super hamiltonian semigroup is introduced. As a result, the structure theorems obtained by A. Cherubini and A. Varisco on quasi commutative semigroups and quasi hamiltonian semigroups respectively are extended to super hamiltonian semigroups.
Of 14,431 Clypeomorus bifasciata Sowerby, 1855 collected from Kuwait Bay between November 1992 and October 1993, 718 (5.0%) were shedding a total of 12 morphologically distinguishable ‘types’ of cercariae: 1 cystocercous, 2 echinos-tome, 1 furcocystocercous, 3 magnacercous, 2 megalurous, 1 microcercous and 2 ubiquità. Ubiquità I and furcocystocercous were the most prevalent species accounting for 66% and 25%, respectively, of total cercaria fauna. Double infections were recorded in only 6 (0.8%) of the infected snails. The overall prevalence of C. bifasciata shedding cercariae was highest (6-10%) in spring and summer, and species diversity was highest (11 species) in fall and spring. Seasonal variations in prevalence and diversity of cercariae were related to environmental factors and hosts behavior.