The photosynthetic pigments and photochemical efficiency of photosystem 2 (PS2) were studied in four constitutive species (Achillea millefolium L., Festuca pseudovina Hack. ex Wiesb., Potentilla arenaria Borkh., and Thymus degenianus Lyka) of a semiarid grassland in South-eastern Hungary. Every species displayed typical sun-adapted traits and substantial plasticity in the composition and functioning of the photosynthetic apparatus. The contents of chlorophylls (Chls) and carotenoids (Cars) on a dry matter basis declined from May to July, however, the amount of total Cars on a Chl basis increased. This increase was the largest in Potentilla (48 %) and the smallest in Achillea (14 %). The pool of xanthophylls (VAZ) was between 25 % and 45 % of the total Car content and was larger in July than in May. The content of β-carotene increased by July, but lutein content did not change significantly. The Chl fluorescence ratio Fv/Fm was reduced by 3-10 % at noon, reflecting the down-regulation of PS2 in the period of high irradiance and high temperature. The occurrence of minimal values of ΔF/Fm' showed close correlation to the de-epoxidation rate of violaxanthin. Hence in natural habitats these species developed a considerable capacity to dissipate excess excitation energy in the summer period in their photosynthetic apparatus through the xanthophyll cycle pool and a related photoprotective mechanism, when the photochemical utilization of photon energy was down-regulated. and S. Veres ... [et al.]
The article reports on a newly realized experimental ground heat exchanger (GHE) which has been built up as an accessory of an experimental low-energy dwelling of Faculty of Mechanical Engineering, Brno University of Technology (FME BUT)., and analyzes some aspects of its project, especially the choice of proper tubing. Based on a simplified computational model, the impact of four most employed tubing types on a performance and an effectivness of the GHE has been judged and benefits of particular tubing types were compared with their investment costs. Finally, using of KG-Systém (PVC)® SN4 was evaluated as the best variant. and Obsahuje seznam literatury a názvosloví
We studied the effects of 15-months of elevated (700 µmol mol-1) CO2 concentration (EC) on the CO2 assimilation rate, saccharide content, and the activity of key enzymes in the regulation of saccharide metabolism (glycolysis and gluconeogenesis) of four C3 perennial temperate grassland species, the dicots Filipendula vulgaris and Salvia nemorosa and the monocots Festuca rupicola and Dactylis glomerata. The acclimation of photosynthesis to EC was downward in F. rupicola and D. glomerata whereas it was upward in F. vulgaris and S. nemorosa. At EC, F. rupicola and F. vulgaris leaves accumulated starch while soluble sugar contents were higher in F. vulgaris and D. glomerata. EC decreased pyrophosphate-D-fructose-6-phosphate l-phosphotransferase (PFP, EC 2.7.1.90) activity assayed with Fru-2,6-P2 in F. vulgaris and D. glomerata and increased it in F. rupicola and S. nemorosa. Growth in EC decreased phosphofructokinase (PFK, EC 2.7.1.11) activity in all four species, the decrease being smallest in S. nemorosa and greatest in F. rupicola. With Fru-2,6-P2 in the assay medium, EC increased the PFP/PFK ratio, except in F. vulgaris. Cytosolic fructose-1,6-bisphosphatase (Fru-1,6-P2ase, EC 3.1.3.11) was inhibited by EC, the effect being greatest in F. vulgaris and smallest in F. rupicola. Glucose-6-phosphate dehydrogenase (G6PDH EC 1.1.1.49) activity was decreased by growth EC in the four species. Activity ratios of Fru-1,6-P2ase to PFP and PFK suggest that EC may shift sugar metabolism towards glycolysis in the dicots. and E. Nádas ... [et al.].